1. Field of the Invention
The present invention relates to a refrigerator comprising at least a water reservoir, a piping system connecting the water reservoir to a dispenser and means for maintaining the water reservoir at a predetermined temperature. In the present description, with the term water we include also still or carbonated water and any kind of beverages, carbonated or not.
2. Description of the Related Art
Refrigerators with a beverage dispenser are well known in the art. Such dispensers are particularly but not exclusively used in the so-called side by side refrigerators in which a freezing chamber is provided side by side to a chilling chamber. Usually the dispenser for water and other beverages is placed in a case of the door of the freezing chamber, particularly because the dispenser is used also for dispensing ice cubes or crushed ice produced by an ice-maker inside the freezing chamber. The reservoir for cold water is usually placed in the chilling chamber and it is maintained at the same temperature of such compartment. The reservoir can be a predetermined length of rolled up tube placed in the chilling chamber. In this case the above mentioned means for maintaining the water in the reservoir at a predetermined temperature is the cooling system of the chilling chamber. If the reservoir is used for storing hot water, usually it is placed outside the refrigerator compartments, for instance in the base zone of the refrigerator where it is also possible to use the heat released from the condenser to pre-heat the incoming water.
Standard refrigerators like the side by side model mentioned above have a pipe inside the foam insulation which connects an external water supplying source, such as a tap, to the reservoir, through the door and then to the dispenser area. Such pipe can have a total length of about two meters or more.
When consumer pushes the paddle on the dispenser, the water that is driven by the water pressure of the main comes out; when the paddle is released, the water flow stops.
At this time the cold (or hot) water inside this pipe start to become warm (or cold), because of ambient temperature influence. So the first glass of water at the next dispensing is water at almost ambient temperature. Therefore the user is either provided with water not at the correct temperature or he/she can think the appliance is not working properly.
An object of the present invention is to provide a refrigeration appliance of the type mentioned above which can dispense water at the desired temperature anytime, independently on the temperature of the water left in the piping system by previous dispensing. With the term “refrigeration appliance” we mean not only refrigerators and freezers, but also beverage vending machines, or water coolers.
This object is achieved thanks to the features listed in the appended claims. Other features, aspects and advantages of the present invention will become more apparent from the following detailed description with reference to the accompanying drawings in which:
With reference to
During a normal operation mode in a refrigerator according to prior art (
According to a first embodiment of the present invention shown in
Whenever is needed, either after every dispensing, or after a predetermined fixed time, the electronic control 20 which is provided with a predetermined simple algorithm opens an electrovalve 4 and switches on a pump 10 mounted on an auxiliary recirculation pipe 9. In this case, the water flows through the path 2-4-9-5 and back to the reservoir. The electronic control 20 runs this cycle automatically at selected time sequence to maintain the water into the pipe always at the correct temperature substantially identical to the temperature of water in the water reservoir 5. As an alternative, the pump 10 and the electrovalve 4 can be switched on only when the user acts on the paddle of the water dispenser W. In this case, the electronic control 20 waits few second before opening the electrovalve 6 so that the recirculation along the auxiliary pipe 9 can bring the temperature of water to the same level of the temperature of water inside the water reservoir 5.
This system solves the problem of water not at the desired level (hot or cold) at first dispensing and also prevent a too long permanence of water inside the piping, which could cause health and safety problems.
With reference to
During normal operation mode, filtered inlet water line 1 is connected to both line 11 and line 12, and to the hot & cold reservoirs respectively 5a and 5b.
When the paddle for hot water is pushed, hot water goes from the hot reservoir 5a through the open electrovalve EV3 located in the base zone of the refrigerator and then, by means of the water line 2 which is inside the foam door, water is delivered to the dispenser W by an open electrovalve EV1.
When the paddle on the dispenser W is released, the electrovalve EV1 remains closed and the electronic control 20 which is provided with a predetermined algorithm opens the electrovalve EV2 so the water flows through the auxiliary line 9, and switches on the pump 10. The water flows then through the line 15 and the circuit opens an electrovalve EV5 located in the base zone of the refrigerator, so that water returns to the hot water reservoir 5a.
In this case the water flows is recirculated back to the reservoir 5a. The electronic control 20 runs this cycle automatically at selected time sequence to maintain the water into the pipe always at the correct temperature, or, as in the first embodiment, it can run the recirculation only when the user pushes the paddle for dispensing hot water.
When the paddle for the cold water is pushed, cold water goes from the cold reservoir 5b through the open electrovalve EV4, and then by the water line 2 to the dispenser W by the open electrovalve EV1.
When the paddle on the dispenser W is released, the electrovalve EV1 remains closed and the electronic control 20 opens the electrovalve EV2 so that the water is recirculated through auxiliary line 9 and by means of the pump 10, through an open electrovalve EV6 to the cold water reservoir 5b.
Also in this case the water flows back to the reservoir and the electronic control 20 runs this cycle automatically at selected time sequence to maintain the water into the pipe always at the correct temperature.
With reference to
According to such third embodiment, a water pipe 16, with a portion 17 thereof in contact with the evaporator—not shown—(banded around, attached similarly to the electrical wire of the defrost heater), is connected to the water pump 10 by an electrovalve EV8 and on the other side to the line 15. An electrovalve EV7 closes the auxiliary line 10—EV7—15 when the water goes through the evaporator line.
Fast cooling feature is provided by keeping close the valve EV7, running the water pump 10 and opening the valve EV8, so that the water flows through the water pipe 17 in contact with the evaporator and goes back to the cold reservoir 5b. This technical solution allows faster water cooling inside the reservoir 5b.
This embodiment may also be used for a fast evaporator defrost. During normal operation mode the refrigerator evaporator is cold and when it is time to defrost it, the operation requires a long time and high heater power.
The circuit of
An electronic control 20 manages those features accordingly to consumer water dispensing needs, and refrigerator operation mode.
Check or one-way valves to reduce cost and complexity of the system can replace some electrovalves. Moreover the present invention is independent on the system used for heating the water in the hot water reservoir 5a.
Instead of using two paddles for hot and cold water dispensing respectively, one paddle only can be used as well in combination with a device (for instance a button) for selecting hot or cold water.
Number | Date | Country | Kind |
---|---|---|---|
06122207 | Oct 2006 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
5502978 | Field | Apr 1996 | A |
7284680 | Farano et al. | Oct 2007 | B2 |
20060130512 | Seo | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
1574797 | Sep 2005 | EP |
2511763 | Feb 1983 | FR |
03033976 | Apr 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20080087036 A1 | Apr 2008 | US |