The present application claims the benefits of priority to Korean Patent Application No. 10-2013-0133254 filed on Nov. 5, 2013, which is herein incorporated by reference in its entirety.
The present disclosure relates to a refrigeration cycle of a refrigerator.
In refrigerator according to the related art, a refrigerant is transferred from one compressor into evaporators respectively disposed at rear sides of a refrigerating compartment and freezing compartment, and then, a valve disposed in each of the evaporators is adjusted in opening degree to alternately perform an operation for cooling the freezing compartment and the refrigerating compartment. Alternatively, a freezing compartment is cooled by using a single evaporator disposed on a side of the freezing compartment, and then cool air is transferred into a refrigerating compartment by using a damper.
However, in the case of the above-described structure, temperatures required for the refrigerating compartment and the freezing compartment are different from each other. Thus, to realize the temperatures required for the two storage compartments, which have a large temperature difference therebetween, in a refrigeration cycle including one compressor, the compressor may operate out of the optimum efficiency range thereof. To solve this limitation, a two-cycle refrigerator including a refrigeration cycle for a refrigerating compartment and a refrigeration cycle for a freezing compartment has been released.
However, in case of the two-cycle refrigerator, following limitations occurs as ever. That is, in the two cycles, one of the limitations is that two compressors and condensers have to be installed in a machine room. As a result, the machine room may increase in volume, and thus the storage compartment may be reduced in volume.
Also, if the two compressors and condensers are installed in the limited machine room, the condensers are limited in size and capacity to cause a limit in heat-dissipation area for dissipating heat.
In addition, when the two condensers and two compressors are disposed in the machine room, flow resistance of indoor air that forcibly flows into the machine room by a condensation fan to deteriorate heat-dissipation efficiency of the condensers.
To solve the above-described limitations of the refrigerator having the two refrigerant cycles, needs for developing a refrigerator that has a small size and high heat-dissipation efficiency due to the machine room having a limited volume are being on the rise.
The present disclosure is proposed to improve the above-described limitations.
In one embodiment, a refrigeration cycle of a refrigerator including a first refrigeration cycle in which a first refrigerant flows along a first refrigerant tube and a second refrigeration cycle in which a second refrigerant flows along a second refrigerant tube includes: first and second compressors compressing each of the first and second refrigerants into a high-temperature high-pressure gaseous refrigerant; a combined condenser condensing each of the first and second refrigerants passing through the first and second compressors into a high-temperature high-pressure liquid refrigerant; first and second expansion valves phase-changing each of the first and second refrigerants passing through the combined condenser into a low-temperature low-pressure two-phase refrigerant; and first and second evaporators changing the refrigerant passing through each of the first and second expansion valves into a low-temperature low-pressure gaseous refrigerant, wherein the combined condenser includes: first and second condensation tubes constituting portions of the first and second refrigerant tubes that connect the first and second compressors to the first and second expansion valves, respectively; and heat-exchange fins contacting surfaces of the first and second condensation tubes, wherein the first and second condensation tubes share at least a portion of the heat-exchange fins, the first and second condensation tubes are bent several times to form a meander line in a state where the first and second refrigerant tubes each of which has a predetermined width and length are vertically disposed in parallel to each other, and the heat-exchange fins are inserted between the condensation tubes that are adjacent thereto.
Each of the heat-exchange fins may have the same width as that of each of the first and second condensation tubes and be bent several times in a wave form, and cusps defined at the bent portions may contact one or all of surfaces of the first and second condensation tubes.
The cusps may include an upper cusp and a lower cusp, and the heat-exchange fins may include: a first heat-exchange fin in which all of the upper and lower cusps contact the surface of the first condensation tube; a second heat-exchange fin in which all of the upper and lower cusps contact the surface of the second condensation tube; and a sharing heat-exchange fin in which one cusp of the upper and lower cusps contacts the surface of the first condensation tube, and the other cusp contacts the surface of the second condensation tube.
In a stand-alone operation mode of the first refrigeration cycle, heat exchange may be performed through the first heat-exchange fin and the sharing heat-exchange fin, in a stand-alone operation mode of the second refrigeration cycle, the heat exchange may be performed through the second heat-exchange fin and the sharing heat-exchange fin, and in a simultaneous operation mode of the first and second refrigeration cycles, the heat exchange may be performed through all of the heat-exchange fins.
The first and second condensation tubes may have the same width, and a plurality of refrigerant flow channels may be defined in the first and second condensation tubes, respectively.
The refrigeration cycle may further include: an inflow-side head connected to one end of each of the first and second condensation tubes to distribute the refrigerant into the refrigerant flow channels; an inflow port disposed on one side of the inflow-side head, the inflow port being connected to the refrigerant tube that extends from each of the first and second compressors; a discharge-side head connected to the other end of each of the first and second condensation tubes to collect the refrigerant flowing along the refrigerant flow channels; and a discharge port disposed on one side of the discharge-side head, the discharge port being connected to each of the first and second expansion valves.
One of the first and second evaporators may be a refrigerating compartment evaporator, and the other of the first and second evaporators may be a freezing compartment evaporator.
The combined condenser and the first and second compressors may be accommodated in a machine room of the refrigerator.
The first and second refrigerants may be the same kind.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.
Hereinafter, a refrigeration cycle of a refrigerator according to an embodiment will be described in detail with reference to the accompanying drawings.
Referring to
In detail, the first refrigeration cycle may include a first compressor 11 compressing the first refrigerant into a high-temperature high-pressure gas; a second condensation part condensing the high-temperature high-pressure first refrigerant passing through the first compressor 11 into a high-temperature high-pressure liquid refrigerant; a first expansion valve 13 phase-changing the high-temperature high-pressure liquid refrigerant passing through the second condensation part into a low-temperature low-pressure two-phase refrigerant; and a first evaporator 12 absorbing heat of the refrigerant passing through the first expansion valve 13 to generate a gaseous refrigerant.
Also, the second refrigeration cycle may include a second compressor 14 compressing the second refrigerant, a second condensation part condensing the second refrigerant, a second expansion valve 15 phase-changing the second refrigerant, and a second evaporator 16.
Here, the first condensation part and the second condensation part may be defined as a combined condenser 20 because the first and second condensation parts respectively include separate refrigerant tubes and share the heat-exchange fins. Also, the first compressor 11, the second compressor 14, and the combined condenser 20 may be disposed in a machine room of the refrigerator. A condensation fan 201 may be disposed at a point that is spaced apart from the combined condenser 20. The condensation fan 201 may be disposed on a position at which air forcibly flowing by the condensation fan 201 passes through a gap defined between the heat-exchange fins of the combined condenser 20 and then is discharged to the outside of the machine room.
Also, the first evaporator 12 may be an evaporator for cooling one of the refrigerating compartment and freezing compartment of the refrigerator. The first evaporator 12 may be disposed on a rear wall of one of the refrigerating compartment and the freezing compartment, and a first evaporation fan 121 may be disposed above or under the first evaporator 12. Also, the second evaporator 16 may be an evaporator for cooling the other of the refrigerating compartment and freezing compartment of the refrigerator. The first evaporator 16 may be disposed on a rear wall of the other of the refrigerating compartment and the freezing compartment, and a second evaporation fan 161 may be disposed above or under the second evaporator 16.
Hereinafter, a structure of the combined condenser 20 and an operation state of the heat-exchange fins according to the operation mode will be described with reference to the accompanying drawings.
Referring to
In detail, a portion of the heat-exchange fins may contact the first and second refrigerant tubes 17 and 18, and the other portion may contact only the first refrigerant tube or only the second refrigerant tube 18.
Inlet ends of the first and second refrigerant tubes 17 and 18 may be respectively connected to inflow-side heads 171 and 181, and outlet ends may be respectively connected to discharge-side heads 172 and 182. Also, inflow ports 173 and 183 through which the refrigerant is introduced may be disposed on one side of the inflow-side heads 171 and 181, and discharge ports 174 and 184 through which the refrigerant is discharged may be disposed on the discharge-side heads 172 and 182.
Also, as illustrated in
Also, the heat-exchange fins may have a structure in which a thin plate having high thermal conductivity and having the same width as each of the refrigerant tubes 17 and 18 is bent or curved several times in a wave form. Also, the heat-exchange fins may be successively disposed in a longitudinal direction between the refrigerant tubes 17 and 18.
Also, cusps of the heat-exchange fins may contact only one side or both sides of the first and second refrigerant tubes 17 and 18. Due to this structure, the air forcibly flowing by the condensation fan 201 may be heat-exchanged with the heat-exchange fins while flowing into channels formed by the bent structure of the heat-exchange fins. The channels may have a lying triangular pillar shape.
The heat-exchange fins may include a first heat-exchange fin of which the cusp contacts only a surface of the first refrigerant tube 17, a second heat-exchange fin 22 of which the cusp contacts only the second refrigerant tube 18, and a sharing heat-exchange fin 23 of which the cusp contacts all of the first and second refrigerant tubes 17 and 18.
In detail, when viewed from one side, the lower cusp and upper cusp of the heat-exchange fins may be alternately disposed. Also, the upper and lower cusps of the first heat-exchange fin 21 may contact only the first refrigerant tube 17. That is, a portion of the refrigerant tube extending in one direction and a portion of the refrigerant tube that is bent in a U shape at a predetermined point to extend in a reverse direction may extend parallel to each other in a state where the portions are spaced a predetermined distance from each other. Then, the first heat-exchange fin 21 may be inserted into the spaced inner space. Thus, the upper and lower cusps of the first heat-exchange fin 21 may contact the surface of the first refrigerant tube 17. Similarly, upper and lower cusps of the second heat-exchange fin 22 may contact a surface of the second refrigerant tube 18.
The sharing heat-exchange fin 23 may be disposed on an area that faces the first and second refrigerant tubes 17 and 18. That is, one of the upper and lower cusps of the sharing heat-exchange fin 23 may contact the surface of the first refrigerant tube 17, and the other may contact the surface of the second refrigerant tube 18.
In the case of the combined condenser 20 having the above-described structure, the heat-exchange fins participating in the heat exchange may change according to the operation mode. That is, the heat-exchange fins participating in the heat-exchange operation are divided according to the operation mode of the refrigerator. Also, the heat-exchange operation may occur over the entire region in a width direction of the heat-exchange fins participating in the heat-exchange operation. Thus, the heat-exchange fins may be improved in availability when compared to that of the case in which the first and second condensers are simply disposed forward and backward in parallel to each other.
Referring to
As illustrated in
Here, parts except for the second heat-exchange fin 22 that does not contact at all the first refrigerant tube 17, i.e., the first heat-exchange fin 21 and the sharing heat-exchange fin 23 may absorb heat from the cusps thereof contacting the first refrigerant tube 17. Also, the heat-exchange fins of which the cusps contact the first refrigerant tube 17 may absorb heat over the entire area in the width direction of the heat-exchange fins and then be heat-exchanged with external air.
Referring to
In detail, when a second refrigeration cycle operates, a high-temperature high-pressure refrigerant flows along the second refrigerant tube 18, and the heat-exchange fins contacting the second refrigerant tube 18 participate in the heat-exchange operation. Also, unlike the first refrigeration cycle operation, all of the second heat-exchange fin 22 and the sharing heat-exchange fin 23 except for the first heat-exchange fin 21 contacting only the first refrigerant tube 17 may participate in the heat-exchange operation.
According to the refrigeration cycle of the refrigerator according to the embodiment, the following effects can be obtained.
First, the single-type condenser structure may be adopted for the refrigerator having the two refrigeration cycles to improve utilization efficiency of the machine room.
Second, in the two-cycle structure, the two condensers may be changed in design into the single-type condenser to relatively widen the inner space of the machine room. Thus, the flow resistance of the air for the heat dissipation may be reduced in the machine room.
Third, in the condenser structure according to the embodiment, since the two independent condensation refrigerant tubes share the heat-exchange fin, utilization efficiency of the heat-exchange fin may increase when compared to a case in which the two condensers are disposed in parallel to each other.
That is to say, in the structure in which the two independent condensers are disposed in parallel to each other, if only one of the two cycles operates, the heat-change fin of the condenser in the refrigeration cycle that does not operate may not perform the heat-dissipation operation.
However, according to the embodiment, since the two independent condensation tubes share at least one portion of the heat-exchange fins, even though only one refrigeration cycle operates, the whole heat-exchange fins contacting the condensation tube in which the refrigerant flows may perform the heat-dissipation operation. Thus, the heat-dissipation amount of the condenser may increase to improve the heat-dissipation efficiency.
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
10-2013-0133254 | Nov 2013 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
3392541 | Nussbaum | Jul 1968 | A |
4505419 | Steeb | Mar 1985 | A |
4901791 | Kadle | Feb 1990 | A |
5076353 | Haussmann | Dec 1991 | A |
20100229804 | Okamoto | Sep 2010 | A1 |
20120011867 | Koons | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
1478008 | Feb 2004 | CN |
2783218 | May 2006 | CN |
2020040011489 | Dec 2005 | DE |
2758615 | Jul 1998 | FR |
2000-283569 | Oct 2000 | JP |
2001-085883 | Mar 2001 | JP |
10-2011-0071167 | Jun 2011 | KR |
106 435 | Jun 1963 | NL |
WO 2012040281 | Mar 2012 | WO |
Entry |
---|
European Office Action and Search Report dated Apr. 24, 2015 for Application No. EP 14191702, 7 Pages. |
Number | Date | Country | |
---|---|---|---|
20150121949 A1 | May 2015 | US |