The present invention relates to a refrigeration cycle device which switches directions of circulation of a refrigerant and causes a heat exchanger, which functions as an evaporator in a heating operation, to function as a condenser in a defrosting operation to defrost the heat exchanger.
This application is a U.S. national stage application of PCT/JP2017/024969 filed on Jul. 7, 2017, the contents of which are incorporated herein by reference.
Conventionally, refrigeration cycle devices are known which switch directions of circulation of a refrigerant and cause a heat exchanger, which functions as an evaporator in a heating operation, to function as a condenser in a defrosting operation to defrost the heat exchanger. For example, Japanese Patent Laying-Open No. S61-36659 (PTL 1) discloses a heat pump air conditioner which reduces flow path resistance of an expansion means in a defrosting operation less than in a typical heating operation, thereby allowing a reduction in time required for the defrosting operation.
PTL 1: Japanese Patent Laying-Open No. S61-36659
An amount of refrigerant (a circulation volume of the refrigerant) that passes, per unit time, through the heat exchanger (the heat exchanger that functions as the evaporator in the heating operation) to be defrosted is increased by reducing the flow path resistance of the expansion means in the defrosting operation less than in the typical heating operation, as the heat pump air conditioner disclosed in Japanese Patent Laying-Open No. S61-36659 (PTL 1). Consequently, the quantity of heat per unit time increases, which is transferred from a component (e.g., a piping member or a compressor) of the refrigeration cycle device via the refrigerant to the heat exchanger to be defrosted. As a result, the rate of melting of the frost formed on the heat exchanger increases.
If the refrigerant can barely recover heat from the component of the refrigeration cycle device (if the heat capacity of the component is almost used up) prior to the completion of defrosting of the heat exchanger, there is almost no quantity of heat that is to be transferred via the refrigerant to the heat exchanger to be defrosted, which slows down the rate of melting of the frost formed on the heat exchanger. This results in delay in completion of the defrosting operation.
The present invention is made to solve the problem as mentioned above, and an object of the present invention is to reduce the time required to defrost the refrigeration cycle device.
A refrigeration cycle device according to the present invention performs a heating operation and a defrosting operation. A refrigerant circulates in opposite directions in the defrosting operation and the heating operation. The refrigeration cycle device includes a compressor, a first beat exchanger and a second heat exchanger, a decompressor, and a flow path switch. The flow path switch switches the directions of circulation of the refrigerant. In the heating operation, the refrigerant circulates in the order of the compressor, the first heat exchanger, the decompressor, and the second heat exchanger. In the defrosting operation, the refrigerant circulates in the order of the compressor, the second heat exchanger, the decompressor, and the first heat exchanger. The defrosting operation includes a first mode and a second mode. The opening of the decompressor is greater in the first mode than in the heating operation. The opening of the decompressor is less in the second mode than in the first mode.
The defrosting operation of the refrigeration cycle device according to the present invention includes a first mode in which the opening of the decompressor is greater than in the heating operation, and a second mode in which the opening of the decompressor is less than in the first mode. In the first mode, the heat exchanger is defrosted using mainly the quantity of heat stored in a component of the refrigeration cycle device. In the second mode, energy (compressor input) applied to the refrigerant by the compressor increases greater than in the first mode. Even if the quantity of heat required to defrost the heat exchanger is insufficient in the first mode, the quantity of heat required to defrost the heat exchanger can be compensated for in the second mode. Consequently, the rate of melting of the frost formed on the heat exchanger to be defrosted, can be inhibited from decreasing.
According to the refrigeration cycle device of the present invention, the time required to defrost the heat exchanger can be reduced.
Hereinafter, an embodiment according to the present invention will be described, with reference to the accompanying drawings. Note that the same reference signs are used to refer to the same or like parts, and the description thereof will in principle not be repeated.
As shown in
Outdoor fan 11 is arranged to be close to outdoor heat exchanger 7. Indoor fan 12 is arranged to be close to indoor heat exchanger 4.
Controller 60 controls the drive frequency of compressor 1. Controller 60 switches four-way valve 2. Controller 60 controls the opening of decompressor 6. Controller 60 controls an air delivery rate of outdoor fan 11 per unit time, and an air delivery rate of indoor fan 12 per unit time.
A pressure sensor 21 and a thermistor 31 are attached to a discharge piping of compressor 1. A pressure sensor 22 and a thermistor 32 are attached to a drawing-in piping of compressor 1. Controller 60 uses pressure sensors 21, 22 to measure a pressure of a refrigerant. Controller 60 uses thermistors 31, 32 to measure a piping temperature corresponding to a temperature of the refrigerant.
A thermistor 33 is attached to a piping that is connecting decompressor 6 and outdoor heat exchanger 7. Controller 60 measures a piping temperature corresponding to a temperature of the refrigerant leaving the outdoor heat exchanger 7.
In the heating operation, controller 60 controls four-way valve 2 to bring the outlet of compressor 1 and a connecting pipe 3 into communication, and outdoor heat exchanger 7 and the inlet of compressor 1 into communication. A gaseous refrigerant (a gas refrigerant), which has been adiabatic compressed by compressor 1 and become high temperature and high pressure, passes through four-way valve 2 into indoor heat exchanger 4 via connecting pipe 3. Indoor heat exchanger 4 functions as a condenser in the heating operation. The high-temperature, high-pressure gas refrigerant dissipates heat to indoor air introduced into indoor heat exchanger 4 by indoor fan 12, and condenses into a high pressure liquid refrigerant (a liquid refrigerant).
The high pressure liquid refrigerant passes through decompressor 6 via connecting pipe 5, thereby expanding into a low-temperature, low-pressure refrigerant (wet steam) in a two-phase gas/liquid state, and the wet steam flows into outdoor heat exchanger 7. Outdoor heat exchanger 7 functions as an evaporator in the heating operation. The low-temperature, low-pressure wet steam absorbs heat from outdoor air introduced into outdoor heat exchanger 7 by outdoor fan 11, and evaporates into a low pressure gas refrigerant. The low pressure gas refrigerant is then drawn into compressor 1 via four-way valve 2, and circulates through refrigeration cycle device 100 in the same manner described above.
The high pressure liquid refrigerant passes through decompressor 6, thereby expanding into low-temperature, low-pressure wet steam, and the wet steam flows into indoor heat exchanger 4 via connecting pipe 5. Indoor heat exchanger 4 functions as an evaporator in the cooling operation and the defrosting operation. The low-temperature, low-pressure wet steam absorbs heat from indoor air introduced into indoor heat exchanger 4 by indoor fan 12, and evaporates into a low pressure gas refrigerant. The low pressure gas refrigerant then passes through four-way valve 2 via connecting pipe 3 and is drawn into compressor 1, and circulates through refrigeration cycle device 100 in the same manner described above.
In the heating operation of a refrigeration cycle, as the outside air temperature decreases less than a certain temperature (e.g., 7 degrees Celsius), the temperature of outdoor heat exchanger 7, functioning as the evaporator, decreases less than zero degree Celsius, resulting in formation of frost on outdoor heat exchanger 7. As a result, an air duct of outdoor fan 11 is blocked with the frost and the heating capacity of refrigeration cycle device 100 decreases. The defrosting operation needs to be performed regularly to melt the frost formed on outdoor heat exchanger 7.
In the heating operation, the defrosting operation is initiated if defrost start conditions are met. The defrost start conditions may be any insofar as they indicate that the frost formed on the fins of outdoor heat exchanger 7 has grown to an extent that can be resistant to heat transfer or ventilation. Examples of the defrost start conditions include the pressure measured by pressure sensor 22 (the pressure of the refrigerant drawn into compressor 1) as being less than or equal to a reference pressure, and the temperature measured by thermistor 32 (the temperature of the refrigerant drawn into compressor 1) as being less than or equal to a reference temperature.
In the defrosting operation, controller 60 stops outdoor fan 11 and indoor fan 12, switches four-way valve 2 to reverse the direction of circulation of the refrigerant, and operate compressor 1. A high-temperature, high-pressure gas refrigerant, discharged from compressor 1, is allowed to flow into outdoor heat exchanger 7, thereby melting frost or ice formed on the fins of outdoor heat exchanger 7. A refrigerant that leaves the outdoor heat exchanger 7 is a liquid refrigerant having a temperature of about zero degree Celsius, and the refrigerant passes through decompressor 6 thereby expanding into low-temperature, low-pressure wet steam.
In the heating operation, temperatures of connecting pipe 5, indoor heat exchanger 4, and connecting pipe 3 are, generally, greater than or equal to 40 degrees Celsius, and up to around 100 degrees Celsius. The low-pressure, low-temperature wet steam, resulting from the refrigerant leaving the outdoor heat exchanger 7, passing through decompressor 6, and expanding during the defrosting operation, absorbs heat from the piping member and evaporates into a low pressure gas refrigerant on the way through indoor heat exchanger 4 via connecting pipe 5 to connecting pipe 3. The low pressure gas refrigerant is then drawn into compressor 1 via four-way valve 2, and circulates around refrigeration cycle device 100 in the same manner described above. In the defrosting operation, the quantity of heat applied to the refrigerant by compressor 1 and the quantity of heat of the piping member are used as primary heat sources to melt the frost formed on outdoor heat exchanger 7.
As the defrosting operation continues, the temperatures of connecting pipe 5, indoor heat exchanger 4, and connecting pipe 3 decrease, which prevents the refrigerant circulating around refrigeration cycle device 100 from recovering the quantity of heat from the piping member. Due to this, the refrigerant that passes through four-way valve 2 and is drawn into compressor 1 becomes low-temperature wet steam.
Even if almost all the heat capacity of the piping member has been used up, the quantity of heat required to defrost outdoor heat exchanger 7 can be compensated for by the quantity of heat of compressor 1 and the quantity of heat applied to the refrigerant by compressor 1. For example, if compressor 1 is a high-pressure shell compressor, the temperature of compressor 1 in the heating operation is around 100 degrees Celsius. Thus, the refrigerant extracts heat from compressor 1 and evaporates if wet steam flows into compressor 1 in the defrosting operation.
In the defrosting operation, the quantities of heat stored in the piping member or compressor 1 is greater than the quantity of heat applied to the refrigerant by compressor 1 in terms of an amount that can be used as the heat source for defrosting outdoor heat exchanger 7. Consequently, the time required to defrost outdoor heat exchanger 7 can be reduced by more quickly recovering the quantity of heat of the piping member or the quantity of heat of compressor 1. In order to quickly recover the quantity of heat, the circulation volume of the refrigerant needs to be increased. The circulation volume of the refrigerant can be increased by increasing the opening of decompressor 6 greater than in the heating operation. The quantity of heat can be recovered in the quickest possible way by maximizing the circulation volume of the refrigerant, and it is thus desirable that decompressor 6 is fully opened.
If decompressor 6 has a configuration of multiple on-off valves connected in parallel, rather than a single decompressor, it is desirable that all the multiple on-off valves are fully opened. Pressure loss in decompressor 6 is reduced by reducing the flow path resistance of decompressor 6, thereby allowing for an increased density of the refrigerant drawn into compressor 1. As a result, an increased circulation volume of the refrigerant is achieved. Thus, in the defrosting operation according to the embodiment, the first mode is performed in which the opening of decompressor 6 is greater than in the heating operation. In the first mode, controller 60 fully opens decompressor 6 to increase the opening of decompressor 6 greater than in the heating operation.
As the first mode continues, the quantity of heat stored in compressor 1 reduces, which lowers the temperature of compressor 1 and decreases the quantity of heat which the refrigerant can pick up from compressor 1. Consequently, the temperature of the refrigerant discharged from compressor 1 decreases. If the temperature of the refrigerant decreases to a reference temperature or less (e.g., 20 degrees Celsius or less), the refrigerant can barely recover the quantity of heat from compressor 1.
Consequently, the quantity of heat that is applied to the refrigerant by compressor 1 as the heat source for defrosting outdoor heat exchanger 7, needs to be increased. Thus, in the embodiment, the second mode is performed following the first mode. In the second mode, the opening of the decompressor is less than in the first mode and greater than in the heating operation. In the second mode, controller 60 sets the opening of decompressor 6 less than in the first mode, thereby increasing the difference in pressure between the refrigerant discharged from compressor 1 and the refrigerant drawn into compressor 1 to increase the compressor input (energy applied by the compressor to the refrigerant).
Use of the temperature of the refrigerant discharged from compressor 1 as the conditions for switching the defrosting operation allows for determination with accuracy as to whether the heat capacity of compressor 1 has been used up, compared to using the temperature of the refrigerant drawn into compressor 1 as the conditions for switching the defrosting operation. Since the first mode is allowed to continue until the heat capacity of compressor 1 has been used up, the heat capacity of compressor 1 can be efficiently utilized as the heat source to defrost outdoor heat exchanger 7 in the defrosting operation.
The conditions for switching the defrosting operation from the first mode to the second mode may be superheat of the refrigerant, discharged from compressor 1, as being less than a reference value. The superheat is calculated from a measurement by pressure sensor 21 and a measurement by thermistor 31. Alternatively, the conditions for switching the defrosting operation from the first mode to the second mode may be the temperature or superheat of the refrigerant flowing between compressor 1 and decompressor 6 as being less than or greater than a reference value.
As shown in
As the first mode continues, the quantities of heat stored in the piping member or compressor 1, etc. gradually decreases. As a result, the temperature of the refrigerant discharged from compressor 1 gradually decreases, down to 20 degrees Celsius or lower at time tm2. At time tm2, the defrosting operation is switched from the first mode to the second mode. The opening of decompressor 6 is reduced more in the second mode than in the first mode, which increases the compressor input greater in the second mode than in the first mode. As a result, the temperature of the refrigerant discharged from compressor 1 in the second mode is higher than the temperature at time tm2 at which the conditions for switching the defrosting operation are met.
In the first mode or the second mode, controller 60 determines that most of the frost formed on outdoor heat exchanger 7 has melted, and ends the defrosting operation if conditions for ending the defrosting operation are met. The conditions for ending the defrosting operation may be any insofar as it can be determined that most of the frost formed on outdoor heat exchanger 7 has melted. Examples of the conditions for ending the defrosting operation include the temperature (the measurement by thermistor 33) of the refrigerant flowing between outdoor heat exchanger 7 and decompressor 6 as being higher than or equal to a reference temperature (e.g., 5 degrees Celsius or higher).
As the pressure of the refrigerant increases greater than the pressure at the critical point, a phase change no longer occurs between the liquid refrigerant and the gas refrigerant. The refrigerant is a liquid in the region in which the enthalpy is below the saturated liquid line. The refrigerant is wet steam in the region between the saturated liquid line and the saturated vapor line. The refrigerant is a gas in the region in which the enthalpy is above the saturated vapor line. The same is true for
As shown in
The process of the state change from point R12 to point R13 represents a process of condensation of the refrigerant in outdoor heat exchanger 7. The saturation temperature of the refrigerant in the process of condensation in the defrosting operation is zero degree Celsius, which is the ice melting temperature, or higher by a few degrees than zero degree Celsius. The process of the state change from point R13 to point R14 represents a process of decompression of the refrigerant by decompressor 6. Point R14 represents a state of the refrigerant leaving the decompressor 6. The process of the state change from point R14 to point R11 represents a process of evaporation of the refrigerant in indoor heat exchanger 4.
As the first mode continues, the temperature of the refrigerant drawn into compressor 1 and the temperature of the refrigerant discharged from compressor 1 both decrease, and thus the state of the refrigerant at point R11 and the state of the refrigerant at point R12 change toward the state of the refrigerant at point R15 and the state of the refrigerant at point R16, respectively.
If the conditions are met for switching the defrosting operation from the first mode to the second mode, the opening of decompressor 6 is reduced in the second mode. The flow path resistance of decompressor 6 increases and thus the density of the refrigerant leaving the decompressor 6 decreases. The pressure of the refrigerant leaving the decompressor 6 decreases and thus the state of the refrigerant at point R14 changes to the state of the refrigerant at point R24. The pressure of the refrigerant drawn into compressor 1 also decreases, and thus the state of the refrigerant changes from the state at point R15 to the state at point R21.
In the second mode, the refrigerant circulates through refrigeration cycle device 100 in the order of the points R21, R22, R13, and R24. The enthalpy of the refrigerant in the state at point R22 is higher than the enthalpy at point R16 in the first mode, due to an increase in the compressor input. In other words, the quantity of heat of the refrigerant in the state at point R22 is greater than the quantity of heat of the refrigerant in the state at point R16. Accordingly, frost formed on outdoor heat exchanger 7 melts more quickly by defrosting the outdoor heat exchanger 7 using the quantity of heat of the refrigerant in the state at point R22 than by continuing the first mode and defrosting the outdoor heat exchanger 7 using the quantity of heat of the refrigerant in the state at point R16. Consequently, the defrosting of outdoor heat exchanger 7 can be completed in a shorter time.
Refrigeration cycle device 100 performs the second mode in which the compressor input is greater than in the first mode, if outdoor heat exchanger 7 is defrosted incompletely in the first mode although the quantity of heat of the piping member and the quantity of heat of the component of refrigeration cycle device 100, such as compressor 1, have been used up. As such, the second mode is performed after the first mode, thereby speeding up the melting of the frost formed on outdoor heat exchanger 7. Consequently, the time required to defrost the outdoor heat exchanger 7 is further reduced.
As shown in
Controller 60 stops outdoor fan 11 and indoor fan 12 at S20, and passes the process to S30. Controller 60 switches four-way valve 2 to change the direction of circulation of the refrigerant to a direction opposite the direction of circulation for the heating operation at S30, and passes the process to S40.
Step S40 includes S41, S42, and S43 which are performed in the first mode. Controller 60 sets the defrosting operation to the first mode in which decompressor 6 is fully opened, and passes the process to S42. Controller 60 waits for a period of time at S42, and then passes the process to S43. While controller 60 is waiting for a period of time in the first mode, a high-temperature, high-pressure gas refrigerant, discharged from compressor 1 and having an increased circulation volume, flows into the outdoor heat exchanger 7 having frost formed thereon, and melts the frost.
Controller 60 determines whether the conditions for ending the defrosting operation are met at S43. If the conditions for ending the defrosting operation are met (YES at S43), controller 60 passes the process to S70. If the conditions for ending the defrosting operation are not met (NO at S43), controller 60 passes the process to S50.
At S50, controller 60 determines whether the conditions are met for switching the defrosting operation from the first mode to the second mode. If the conditions for switching the defrosting operation are not met (NO at S50), controller 60 passes the process back to S42. If the conditions for switching the defrosting operation are met (YES at S50), controller 60 passes the process to S60.
Step S60 includes S61, S62, and S63 which are performed in the second mode. Controller 60 switches, at S61, the defrosting operation to the second mode in which the opening of decompressor 6 is reduced greater than in the first mode, and passes the process to S62. Controller 60 waits for a period of time at S62, and then passes the process to S63. While controller 60 is waiting for a period of time in the second mode, a high-temperature, high-pressure gas refrigerant, discharged from compressor 1 and having the compressor input increased greater than in the first mode, flows into outdoor heat exchanger 7 having frost formed thereon, and speeds up the melting of the frost.
At S63, controller 60 determines whether the conditions for ending the defrosting operation are met. If the conditions for ending the defrosting operation are not met (NO at S63), controller 60 passes the process back to S62. If the conditions for ending the defrosting operation are met (YES at S63), controller 60 passes the process to S70.
Controller 60 switches four-way valve 2 to return the direction of circulation of the refrigerant back to the direction of circulation for the heating operation at S70, and passes the process to S80. Controller 60 puts outdoor fan 11 and indoor fan 12 back into operation at S80, and returns the process to the main routine.
After the defrosting operation ends, typically, the heating operation resumes. Controller 60 switches four-way valve 2 to switch the direction of circulation of the refrigerant and causes outdoor fan 11 and indoor fan 12 to operate, thereby operating compressor 1. In the defrosting operation, the temperature of indoor heat exchanger 4 is reduced. Thus, if cold air delivered into the room is not desirable from the standpoint of user comfort, the operation of indoor fan 12 may be initiated later in time than the initiation of the operation of compressor 1.
In order to increase the circulation volume of the refrigerant, preferably, a greater density of the refrigerant is drawn into compressor 1. The density of the refrigerant drawn into compressor 1 is maximum when the saturation temperature is zero degree Celsius where there is no pressure loss in decompressor 6. However, for cost or installation space reasons, it is often difficult to use a large-diameter electronic decompressor as the decompressor 6 for the sake of reduction of the pressure loss in decompressor 6.
A cost considerably increases if decompressor 6 is configured, for the sake of reduction of the pressure loss in decompressor 6, such that multiple on-off valves are connected in parallel. Thus, when refrigeration cycle device 100 is in the first mode, controller 60 selects decompressor 6 that allows the saturation temperature of the refrigerant drawn into compressor 1 to be higher than or equal to −10 degrees Celsius and less than or equal to zero degree Celsius, and controls the opening of decompressor 6, the saturation temperature being calculated from a measurement by pressure sensor 22.
The saturation temperature of the refrigerant drawn into compressor 1 in the state at point R41 is lower than that in the state at point R31. The enthalpy difference between the refrigerant discharged from compressor 1 and the refrigerant drawn into compressor 1 is greater between points R41 and R42 than between points R31 and R32. For the density of the refrigerant drawn into compressor 1, density D2 of the refrigerant in the state at point R41 is less than density D1 of the refrigerant in the state at point R31.
In other words, the lower the saturation temperature of the refrigerant drawn into compressor 1 is, the greater the enthalpy difference between the refrigerant discharged from compressor 1 and the refrigerant drawn into compressor 1 and the less the density of the refrigerant drawn into compressor 1 is. The compressor input is in proportion to a product of the density of the refrigerant drawn into compressor 1 and the enthalpy difference between the refrigerant discharged from compressor 1 and the refrigerant drawn into compressor 1. If the density of the refrigerant drawn into compressor 1 is increased by increasing the saturation temperature of the refrigerant drawn into compressor 1, the enthalpy difference between the refrigerant discharged from compressor 1 and the refrigerant drawn into compressor 1 decreases.
In contrast, if the enthalpy difference between the refrigerant discharged from compressor 1 and the refrigerant drawn into compressor 1 is increased by lowering the saturation temperature of the refrigerant drawn into compressor 1, the density of the refrigerant drawn into compressor 1 decreases. The compressor input is at its maximum when the saturation temperature of the refrigerant drawn into compressor 1 is around −30 degrees Celsius.
As shown in
As described above, according to the refrigeration cycle device of the embodiment, the time required to defrost the heat exchanger can be reduced.
The presently disclosed embodiment should be considered in all aspects as illustrative and not restrictive. The scope of the present invention is indicated by the appended claims, rather than by the description above, and all changes that come within the scope of the claims and the meaning and range of equivalency of the claims are intended to be embraced within their scope.
1 compressor; 2 four-way valve; 3, 5 connecting pipe; 4, 7 heat exchanger; 6 decompressor; 11 outdoor fan; 12 indoor fan; 21, 22 pressure sensor; 31 to 33 thermistor; 50 outdoor unit; 51 indoor unit; 60 controller; and 100 refrigeration cycle device.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/024969 | 7/7/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/008744 | 1/10/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5651261 | Nakajima | Jul 1997 | A |
20050011206 | Luo | Jan 2005 | A1 |
20060272345 | Ueno | Dec 2006 | A1 |
20070033955 | Luo | Feb 2007 | A1 |
20130091882 | Cho | Apr 2013 | A1 |
20130104576 | Lee | May 2013 | A1 |
Number | Date | Country |
---|---|---|
S61-036659 | Feb 1986 | JP |
S62-125271 | Jun 1987 | JP |
H02-230058 | Sep 1990 | JP |
02-230058 | Feb 1998 | JP |
2010-101570 | May 2010 | JP |
2016-080330 | May 2016 | JP |
Entry |
---|
Extended European Search Report dated Jun. 2, 2020 issued in the counterpart application file with EPO No. 17917125.1. |
International Search Report of the International Searching Authority dated Aug. 29, 2017 for the corresponding International application No. PCT/JP2017/024969 (and English translation). |
Office Action dated Sep. 23, 2020 issued on corresponding JP application No. 2019-528303 (and English translation). |
Number | Date | Country | |
---|---|---|---|
20200124328 A1 | Apr 2020 | US |