The invention relates to a refrigeration appliance having an ice maker, which features an ice cube tray supported in such a manner that it can be rotated about an axis of rotation.
Refrigeration appliances, in particular refrigeration appliances configured as domestic appliances, are known and are used for household management in domestic situations or in the catering sector, in order to store perishable food and/or beverages at defined temperatures.
In an ice maker of such a refrigeration appliance ice cubes formed in the ice cube tray are ejected in that the ice cube tray is twisted by means of a drive until the ice cube tray is upside down and the ice cubes drop out of the ice cube tray. This rotational movement of the ice cube tray is stopped by a stop from a defined position. As the ice tray is configured as flexible, contact with the stop causes the ice cube tray to twist, ultimately releasing the ice cubes from the ice cube tray. Gravity then causes them to drop down into an ice cube container arranged below the ice cube tray. The frequent deformation of the ice cube tray and the low ambient temperatures means that the ice cube tray is subject to a particular mechanical strain with the result that the ice cube tray has a short service life.
It is therefore the object of the invention to provide a refrigeration appliance having an ice maker, which has a longer service life.
This object is achieved by the subject matter having the features as claimed in the independent claim. Advantageous developments are the subject matter of the dependent claims, the description and the drawings.
The present invention is based on the knowledge that the ageing of the ice cube tray due to elastic deformation can be reduced if the ice cube tray is deformed in a regular manner to empty out the ice cubes.
According to one aspect the inventive object is achieved by a refrigeration appliance, the ice maker of which has two stops to delimit a rotational movement of the ice cube tray. This has the technical advantage that the deformation for emptying the ice tray no longer exerts such a significant mechanical strain on the ice cube tray due to regularized deformation. The service life of the ice cube tray is therefore lengthened.
A refrigeration appliance refers in particular to a domestic appliance, in other words a refrigeration appliance used for household management in domestic situations or in the catering sector, which serves in particular to store food and/or beverages at defined temperatures, for example a refrigerator, a freezer cabinet, a combined refrigerator/freezer, a chest freezer or a wine chiller cabinet.
In one advantageous embodiment the ice cube tray can be twisted between a freezing position and an emptying position. This has the technical advantage that in the freezing position water can be frozen to make ice cubes in the ice cube tray and in the emptying position the ice cubes thus produced can be ejected from the ice cube tray by twisting the ice cube tray.
In a further advantageous embodiment the two stops delimit the rotational movement of the ice cube tray about the axis of rotation and thus determine the freezing position and the emptying position. This has the technical advantage that no further measuring means are required to detect the rotational position of the ice cube tray as it is moved between the freezing position and the emptying position, as the rotational movement is stopped by the stops. This results in a particularly simple structure.
In one advantageous embodiment at least one of the two stops has two opposing stop regions. This has the technical advantage that the ice maker has a particularly simple structure as each stop has a double function due to the two opposing stop regions.
In a further advantageous embodiment at least one stop region of one of the two stops is formed by an edge. This has the technical advantage that the stop region has a small surface and therefore frost cannot build up from the moisture in the air in the interior of the refrigeration appliance, possibly resulting in a build-up of ice as a result of the pressure produced by contact surfaces resting against the ice cube tray.
In a further advantageous embodiment the two stops are arranged at equal distances around the axis of rotation in the peripheral direction. This has the technical advantage that the two stops allow a rotational movement of the ice cube tray through for example 150° to 180°. This means that ice cubes form in a regular manner in the freezing position and reliable emptying of the ice cube tray is ensured in the emptying position.
In a further advantageous embodiment the two stops are arranged in an axisymmetrical manner in relation to the axis of rotation in the same position in its direction of extension. This has the technical advantage that the ice cube tray is subjected to strain by the two stops in a direction of extension at right angles to the rotational movement of the ice cube tray and not along its longitudinal axis, which extends in the direction of the axis of rotation and is relatively much more sensitive.
In a further advantageous embodiment the two stops are arranged to come into contact with end face contact segments of the ice cube tray. This has the technical advantage that the stops do not take up space in the width direction of the ice maker, thereby allowing a particularly compact structure to be achieved with the ice maker requiring little space.
In a further advantageous embodiment the end face contact segments are molded onto the ice cube tray. This has the technical advantage that the molded design of the contact segments means that stops do not have to be fitted. This simplifies manufacture.
In a further advantageous embodiment at least one of the two stops is made of plastic. This has the technical advantage that the stop or stops can be made of a material that is inexpensive and easy to process.
In a further advantageous embodiment at least one of the two stops is molded onto a frame of the ice maker. This has the technical advantage that the molded design of the stop or stops means that stops do not have to be fitted. This simplifies manufacture.
In a further advantageous embodiment the ice cube tray is configured as flexible. This has the technical advantage that ice cubes can be ejected from the ice cube tray by deforming the ice cube tray and no further devices are required to eject ice cubes.
In a further advantageous embodiment the ice cube tray can be twisted by a drive of the ice maker for rotating the ice cube tray. This has the technical advantage that the drive for rotating the ice cube tray has a double function, namely that of deforming the ice cube tray to eject the ice cubes in the ice cube tray as well as rotating the ice cube tray.
In a further advantageous embodiment the ice cube tray can be twisted about the axis of rotation. This has the technical advantage that the ice cube tray is twisted in a regular manner over its entire length in the axis of rotation, thereby ensuring that all the ice cubes in the ice cube tray are reliably ejected.
According to a second aspect the inventive object is achieved by an ice maker for such a refrigeration appliance. This has the technical advantage that that the deformation for emptying the ice tray no longer exerts such a significant mechanical strain on the ice cube tray due to regularized deformation. The service life of the ice cube tray is therefore lengthened.
Further exemplary embodiments are described with reference to the accompanying drawings, in which:
The evaporator is configured as a heat exchanger, in which after expansion the liquid refrigerant is evaporated by absorbing heat from the medium to be cooled, in other words air in the interior of the refrigerator.
The compressor is a mechanically driven component, which takes in refrigerant vapor from the evaporator and ejects it to the condenser at a higher pressure.
The condenser is configured as a heat exchanger, in which after compression the evaporated refrigerant is condensed by emitting heat to an external cooling medium, in other words the ambient air.
The throttle device is an apparatus for constantly reducing the pressure by cross section reduction.
The refrigerant is a fluid used for heat transmission in the cold-generating system, which absorbs heat when the fluid is at low temperatures and low pressure and emits heat when the fluid is at a higher temperature and higher pressure, with state changes of the fluid generally being included.
The right refrigeration appliance door 102 can be used to open a right refrigeration compartment 106, which is configured as a freezer compartment in the present exemplary embodiment. The left refrigeration appliance door 104 can be used to open a left refrigeration compartment 108, which is configured as a chiller compartment in the present exemplary embodiment.
Arranged in the right refrigeration compartment 106 is an ice maker 110, which in the present exemplary embodiment prepares ice cubes from water and also supplies crushed ice. Ice cubes and/or crushed ice can be dispensed through the right refrigeration appliance door 102 at the refrigeration appliance front face without the right refrigeration appliance door 102 having to be opened.
In the present exemplary embodiment the ice maker 110 features a frame 200, made of plastic in the present exemplary embodiment. An ice cube tray 202 is supported in a rotatable manner on the frame 200. A drive 204 is provided to rotate the ice cube tray 202 about the axis of rotation D, being formed by an electric motor in the present exemplary embodiment.
In the present exemplary embodiment the ice cube tray 202 is made of a flexible plastic, for example by means of injection molding. The ice cube tray 202 has a plurality of depressions 208. The depressions 208 serve to hold liquid water which is then frozen to make ice cubes.
Ice cubes are then ejected from the depressions 208 in that the drive 204 twists the ice cube tray 202 through for example 150° to 180° so the ice cubes drop out of the ice cube tray 202.
To ensure reliable ejection of ice cubes from the depressions 208 of the ice cube tray 202, the ice cube tray 202, which is configured as flexible in the present exemplary embodiment, is twisted by the drive 204. In the present exemplary embodiment the ice cube tray 202 is twisted about the axis of rotation D. This brings about a minor deformation of the ice cube tray 202 so that ice cubes are released from the depressions 208 and drop down.
In order to bring about such twisting of the ice cube tray 202, the frame 200 in the present exemplary embodiment has two stops 206, which are made of plastic and molded onto the frame 200 in the present exemplary embodiment. Thus the frame is configured as a single piece with the two stops 206 in the present exemplary embodiment.
The two stops 206 delimit the rotational movement of the ice cube tray 202 about the axis of rotation D and thus define the freezing position I shown in
In the present exemplary embodiment the two stops 206 are each in contact with an end face contact segment 212 of the ice cube tray 202. In the present exemplary embodiment the two end face contact segments 212 are molded onto the ice cube tray 202. The ice cube tray 202 is thus configured as a single piece with the two end face contact segments 212.
The two stops 206 also define the emptying position (see
Each stop 206 has two stop regions 300, which are arranged opposite one another in the present exemplary embodiment. The stops 206 in the present exemplary embodiment are therefore configured as double stops. Therefore in the freezing position I in the present exemplary embodiment one of the two stop regions 300 of each stop 206 in each instance is in contact with the end face contact segments 212 of the ice cube tray 206. In the present exemplary embodiment the stop regions 208 are each formed by an edge 302, which in the present exemplary embodiment extends in the direction of the axis of rotation D. This reduces the size of the contact surface, which in turn reduces ice formation. Alternatively the stop regions 208 can also be configured as round or rounded, in order to reduce the contact surface.
These stop regions 208 are also configured as edges 302 extending in the direction of the axis of rotation D. Alternatively said stop regions 208 can also be configured as round or rounded, in order to reduce the contact surface.
When it comes into contact with the edges 210, the ice cube tray 202 is made to twist about the axis of rotation D by the drive 204, as a result of which the elastically configured ice cube tray 202 is deformed to a minor degree such that ice cubes are released from the depressions 208.
The ice cube tray 202 is then moved back from the emptying position II to the freezing position I (see
Number | Date | Country | Kind |
---|---|---|---|
10 2012 223 631 | Dec 2012 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/076572 | 12/13/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/095647 | 6/26/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3269139 | De Vincent | Aug 1966 | A |
5177980 | Kawamoto | Jan 1993 | A |
5400605 | Jeong | Mar 1995 | A |
7204092 | Azcarate Castrellon | Apr 2007 | B2 |
8726686 | Yoon | May 2014 | B2 |
8800316 | Lee | Aug 2014 | B2 |
20020014087 | Kwon | Feb 2002 | A1 |
Number | Date | Country |
---|---|---|
2151644 | Feb 2010 | EP |
Number | Date | Country | |
---|---|---|---|
20150362242 A1 | Dec 2015 | US |