This invention relates generally to a refrigeration system and components thereof, and in particular, to a system having different temperature zones for cooling various food and beverage articles.
People have used refrigerated devices to cool and freeze food and beverage articles for many years. Traditionally, these devices utilize a compressor functionally connected to an insulated container. The compressor and associated components and piping change the pressure of refrigerant to absorb heat from the insulated container. A fan system circulates air into and inside the insulated container. A temperature control device is typically connected to the compressor. The temperature control device cycles the compressor on and off as needed to maintain a desired temperature in the insulated container.
Cycling a compressor on and off requires a significant amount of energy and results in rather loud noises. Variable capacity compressors have been created to provide a compressor that is continuously operating. The speeds of the compressor can be varied substantially and continuously over a wide range of predefined speeds. Such compressors are disclosed in U.S. Pat. Nos. RE 33,620 to Persem and 4,765,150 to Persem.
Operation of variable capacity compressors, like all compressors, results in frost building up on the heat exchange elements. The compressors must be routinely defrosted so that the compressor may operate optimally. One method of defrosting involves running hot gas either through or near the heat exchange elements. Such defrost mechanisms are disclosed in U.S. Pat. Nos. 4,979,371 to Larson; 3,234,754 to Quick; 3,234,753 to Quick; 3,234,748 to Quick; and 3,645,109 to Quick. None of these mechanisms have been designed or utilized with variable capacity compressors. Further, all these mechanisms utilize extensive networks of tubing and control valves to accomplish defrosting.
Many refrigeration devices also have different temperature zones. For example, the common home refrigerator has a freezer section and a refrigeration section. Creating different temperatures in different sections of a refrigeration device can be accomplished in at least two methods. One method involves using a different compressor for each section. Another method involves using fans or the like to circulate cold air from a colder section to a warmer section. The operation of the fans may be controlled by a temperature control device.
For example, U.S. Pat. No. 4,505,126 to Jones et al. discloses a food product transport system, wherein motorized fans are used to circulate air from one section to another. The fans are positioned in partitions separating the different sections. U.S. Pat. No. 6,000,232 to Witten-Hannah et al. discloses a refrigeration system having a freezer section and a refrigeration section in parallel alignment. This patent further discloses a method wherein motorized fans are used to control the amount of chilled air entering each section. U.S. Pat. No. 5,081,850 to Wakatsuki et al. discloses a refrigerator that has two sections separated by a partition, wherein cool air is circulated throughout the sections and through the partition. All of these devices require the circulation of air from one section to another to create different temperatures in each section.
Accordingly, a need exists for an improved refrigeration system and components thereof that solves these and other deficiencies in the prior art. Of course, the present invention may be used in a multitude of situations where similar performance capabilities are required.
The present invention provides a refrigeration system that is cost-effective to manufacture, efficient to operate, relatively quiet when functioning, and overcomes certain of the deficiencies in the prior art. The invention provides for a refrigeration system and components thereof. In one embodiment, the refrigeration system has a container with at least two different temperature cooling zones, which are separated by a divider. The divider has a wall and a partition spaced apart from each other. The partition has a heat transfer plate, which has a sheet with a heat transfer substance attached thereto. In one embodiment, the refrigeration system is cooled by a compressor system having refrigeration and hot-gas defrost modes. A controller controls and selectably operates the compressor system. Preferably, the compressor system has a variable capacity compressor.
The present invention also provides for a compressor system, which is a closed system, wherein an evaporator is functionally connected to a variable capacity compressor. The compressor system selectably operates in at least a refrigeration mode and a hot-gas defrost mode. During the hot-gas defrost mode, the evaporator is defrosted by circulation of gas therethrough. In one embodiment, the compressor system has a variable capacity compressor connected to a condenser, which is further connected to a drier, which in turn is connected to a hot-gas by-pass valve and a heat exchanger. The hot-gas by-pass valve and heat exchanger are connected in parallel to one another and are both connected to an evaporator. The evaporator is connected to the variable capacity compressor to form the closed system. A controller may selectably open and close the hot gas bypass valve.
While one possible application of the present invention is in connection with residential and commercial refrigeration of food and beverage articles, many other applications are possible and references to use in connection with residential and commercial situations should not be deemed to limit the uses of the present invention. The terms “heat exchanger,” “evaporator,” “condenser,” “capillary tube,” “fan,” “cabinet,” “door,” “damper,” “compressor,” “by-pass valve,” and “heat transfer panel” as used herein should not be interpreted as being limited to specific forms, shapes, numbers, or compositions of a heat exchanger, evaporator, condenser, capillary tube, fan, cabinet, door, damper, compressor, by-pass valve, and heat transfer panel. Rather, the evaporator, condenser, capillary tube, fan, cabinet, door, damper, compressor, by-pass valve, and heat transfer panel may have a wide variety of shapes and forms, may be provided in a wide variety of numbers, and may be composed of a wide variety of materials. These and other objects and advantages of the present invention will become apparent from the detailed description, claims, and accompanying drawings.
Illustrative embodiments of a refrigeration system (identified generally as 30) in accordance with the present invention are shown in
The present invention provides a refrigeration system 30 to cool at least one cooling compartment or cooling zone 35. A cooling system, preferably a compressor system 32, is functionally connected to the cooling zone 35 and effectively cools the cooling zone 35. In a preferred embodiment, a portion of the compressor system 32, specifically an evaporator 66, is positioned inside a cooling zone 35. A fan 68 circulates air inside the cooling zone 35 and past the evaporator 66, thus cooling the air. The refrigeration system 30 may have more than one cooling zone 35. Multiple cooling zones 35 may be separated by at least one heat transfer panel 20.
In one embodiment, shown in
As shown in
The compressor system 32 operates in at least three modes: refrigeration, hot-gas defrost, and drip. The controller 70 determines the mode of operation of the compressor system 32 based on preset values such as temperature or time. The compressor system 32 operates in refrigeration mode until a preset termination value, such as temperature or time, is met. When such value is met, the controller 70 switches the compressor system 32 to operate in hot-gas defrost mode until a certain preset value, such as temperature or time, is met. Upon meeting this preset value, the compressor system 32 enters the drip mode. The drip mode allows moisture to drip from the evaporator 66 for a predetermined time. When drip mode is completed, the compressor system 32 may enter a recovery period or return to the refrigeration mode.
When operating in refrigeration mode, the compressor system 32 cools the cooling zone(s) 35. In this mode, the compressor system 32 continuously circulates, evaporates, and condenses a fixed supply of refrigerant in a closed system. As shown in
During the refrigeration mode, ice or frost may accumulate on the evaporator 66 of the compressor system 32. This accumulation results in decreased performance and efficiency. In the embodiment of the present invention shown in
One embodiment of the hot gas defrost mechanism according to the invention is shown in
The gaseous refrigerant is permitted to flow into the drier 58 and then, because the by-pass valve 60 is energized or open, the gaseous refrigerant bypasses the heat exchanger 64 and travels directly to the evaporator 66. The heat from the gaseous refrigerant is transferred to the frost accumulated on the evaporator 66. This heat transfer results in the frost melting and the temperature, and thus the pressure, of the gaseous refrigerant decreasing. The gaseous refrigerant then returns to the compressor 52. This concludes one cycle of the hot-gas defrost mode.
As discussed above and shown in
The divider 43 transfers heat from one cooling zone 35 to another. To accomplish this transfer, the partition 36 has a heat transfer panel 20. Any number and configuration of heat transfer panels 20 may be used, depending on the desired performance of the refrigeration system 30. In the embodiment shown in
In the embodiments shown in
The refrigeration system 30 and components thereof of the present invention may be used in a variety of applications. One such application is residential, commercial, and industrial food and beverage cooling. Specifically, the refrigeration system 30 and components thereof of the present invention may be used in refrigeration cabinets 34. As shown in
The cabinet 34, and the cooling zones 35 contained therein, may be any shape or size. In one embodiment, the cabinet 34 is designed to fit below a counter or sink. In another embodiment, the cabinet 34 is designed to also function as a bar. The cabinet 34 may be designed to have any finish such as stainless steel, wood, or other finish and to fit into any decor, such as contemporary or traditional. The cabinet 34 may also have any number of doors 33 for accessing a single cooling zone 35 or multiple cooling zones 35. For example as shown in
In addition, a single temperature readout 90, or a plurality thereof, may be provided. A readout 90 may be associated with each cooling zone 35. The readouts 90 allow for easy determination of the temperature of a cooling zone 35.
The following examples illustrate different performance and physical characteristics of different refrigeration cabinets 34 employing the refrigeration system 30 and components thereof in accordance with the present invention. The refrigeration systems 30 discussed below each have at least two, and sometimes three, cooling zones 35. The cooling zones are separated by at least one divider 43 that has at least one heat exchange panel 20. The heat exchange panels 20 in each example utilize different thicknesses T of the heat transfer substance 50. The tables associated with each example show the performance of specific cabinets 34 in three separate air temperatures outside of the cooling zone 35 (ambient temperature conditions): 70° F., 90° F., and 110° F. Performance is measured as the BTUs/hour required to maintain the desired temperature inside the cooling zones 35. To arrive at this measurement, three values are multiplied together. These values are Delta T, K-Factor, and the material area of the cooling zone 35 in square feet. Delta T is the temperature difference between the ambient temperature conditions and the temperature inside the cooling zone 35. Delta T is measured in degrees Fahrenheit. K-Factor is the measurement used to quantify the resistance to heat transfer of a component of the cabinet 34. K-Factor is measured in BTU/inch/hour/square foot/degree F.
The following tables illustrate the performance of a refrigeration cabinet 34 with two cooling zones 35 when the refrigeration cabinet 34 is surrounded by various ambient temperature conditions. In this example, the refrigeration cabinet 34 measures 48 inches by 24 inches by 34 inches. One cooling zone 35 is a freezer 42 maintained between −5° F. and 5° F. The freezer compartment 42 measures 20.5 inches by 20.5 inches by 27 inches. The other cooling zone 35 is a refrigerator 44 maintained between 34° F. and 38° F. The refrigerator compartment measures 20.5 inches by 20.5 inches by 27 inches. The freezer 42 and refrigerator 44 each have a single separate door 33 for access thereto. The freezer 42 and refrigerator 44 are separated by a divider 43 measuring 3 inches thick by 20.5 inches by 27 inches. The divider 43 has a partition 36 with heat transfer panel 20 having a ¾ inch thick heat transfer substance 50. The heat transfer substance 50 is Armaflex.
The following tables illustrate the performance of a refrigeration cabinet 34 with two cooling zones 35 when the refrigeration cabinet 34 is surrounded by various ambient temperature conditions. This refrigeration cabinet 34 has the same external and internal dimensions as the cabinet of Example 1, except that the heat transfer substance 50 is ½ inch thick Armaflex.
The following tables illustrate the performance of a refrigeration cabinet 34 with two cooling zones 35 when the refrigeration cabinet 34 is surrounded by various ambient temperature conditions. This refrigeration cabinet 34 has the same external and internal dimensions as the cabinet of Example 1, except that the heat transfer substance 50 is one inch thick Armaflex.
The following tables illustrate the performance of a refrigeration cabinet 34 with two cooling zones 35 when the refrigeration cabinet 34 is surrounded by various ambient temperature conditions. This refrigeration cabinet 34 has the same external and internal dimensions as the cabinet of Example 1, except that this refrigeration cabinet has a refrigerator 44 and a chiller 46 instead of a freezer 43 and a refrigerator 44. The chiller 46 is maintained at about 45° F.
The following tables illustrate the performance of a refrigeration cabinet 34 with two cooling zones 35 when the refrigeration cabinet 34 is surrounded by various ambient temperature conditions. This refrigeration cabinet 34 is essentially the same cabinet of Example 4, except that the heat transfer substance 50 is ½ inch thick Armaflex.
The following tables illustrate the performance of a refrigeration cabinet 34 with two cooling zones 35 when the refrigeration cabinet 34 is surrounded by various ambient temperature conditions. This refrigeration cabinet 34 is the same cabinet of Example 4, except that the heat transfer substance 50 is 1 inch thick Armaflex.
The following tables illustrate the performance of a refrigeration cabinet 34 with two cooling zones 35 when the refrigeration cabinet 34 is surrounded by various ambient temperature conditions. This refrigeration cabinet 34 is the same cabinet as Example 4, except that the chiller 46 is maintained at about 65° F.
The following tables illustrate the performance of a refrigeration cabinet 34 with two cooling zones 35 when the refrigeration cabinet 34 is surrounded by various ambient temperature conditions. This refrigeration cabinet 34 is essentially the same cabinet of Example 7, except that the heat transfer substance 50 is ½ inch thick Armaflex.
The following tables illustrate the performance of a refrigeration cabinet 34 with two cooling zones 35 when the refrigeration cabinet 34 is surrounded by various ambient temperature conditions. This refrigeration cabinet 34 is essentially the same cabinet of Example 7, except that the heat transfer substance 50 is one inch thick Armaflex.
The following tables illustrate the performance of a refrigeration cabinet 34 with two cooling zones 35 when the refrigeration cabinet 34 is surrounded by various ambient temperature conditions. The refrigeration cabinet 34 measures 72 inches by 24 inches by 34 inches. One cooling zone 35 is a freezer 42 maintained between −5° F. and 5° F. The freezer 42 measures 20.5 inches by 20.5 inches by 27 inches. The other cooling zone 35 is a refrigerator 44 maintained between 34° F. and 38° F. The refrigerator 44 measures 47.5 inches by 20.5 inches by 27 inches The freezer 42 has a single door 33 and the refrigerator 44 has two doors 33 for access thereto. The freezer 42 and refrigerator 44 are separated by a divider 43 measuring 3 inches by 20.5 inches by 27 inches. The divider 43 has a partition 36 with ¾ inch thick heat transfer substance 50. The heat transfer substance 50 is Armaflex.
The following tables illustrate the performance of a refrigeration cabinet 34 with two cooling zones 35 and three doors 33 when the refrigeration cabinet 34 is surrounded by various ambient temperature conditions. This refrigeration cabinet 34 has the same external and internal dimensions as the cabinet of Example 10, except that the heat transfer substance 50 is ½ inch thick Armaflex.
The following tables illustrate the performance of a refrigeration cabinet 34 with two cooling zones 35 and three doors 33 when the refrigeration cabinet 34 is surrounded by various ambient temperature conditions. This refrigeration cabinet 34 has the same external and internal dimensions as the cabinet of Example 10, except that the heat transfer substance 50 is one inch thick Armaflex.
The following tables illustrate the performance of a refrigeration cabinet 34 with three cooling zones 35 and three doors 33 when the refrigeration cabinet 34 is surrounded by various ambient temperature conditions. The refrigeration cabinet 34 measures 72 inches by 24 inches by 34 inches. One cooling zone 35 is a freezer 42 maintained between −5° F. and 5° F. The freezer 42 measures 20.5 inches by 20.5 inches by 27 inches; The next cooling zone 35 is a refrigerator 44 maintained between 34° F. and 38° F. The refrigerator 44 measures 47.5 inches by 20.5 inches by 27 inches. The final cooling zone is a chiller 46 maintained between 45° F. and 65° F. The freezer 42, refrigerator 44, and chiller 46 each have a single door 33 for access thereto. The freezer 42 and refrigerator 44 and the refrigerator 44 and chiller 46 are separated by dividers 43. The dividers 43 measure 3 inches by 20.5 inches by 27 inches. The dividers 43 have a partition 36 with ¾ inch thick heat transfer substance 50. The heat transfer substance 50 is Armaflex.
The following tables illustrate the performance of a refrigeration cabinet 34 with three cooling zones 35 and three doors 33 when the refrigeration cabinet 34 is surrounded by various ambient temperature conditions. This refrigeration cabinet 34 has the same external and internal dimensions as the cabinet of Example 13, except that the heat transfer substance 50 is ½ inch thick Armaflex.
The following tables illustrate the performance of a refrigeration cabinet 34 with three cooling zones 35 and three doors 33 when the refrigeration cabinet 34 is surrounded by various ambient temperature conditions. This refrigeration cabinet 34 has the same external and internal dimensions as the cabinet of Example 13, except that the heat transfer substance 50 is one inch thick Armaflex.
The following tables summarize the performance capabilities of the refrigeration systems of the above discussed examples, Examples 1-15. The following tables show the BTU/hour required to maintained specific sections at predetermined temperatures and the total BTU/hour consumed by a cabinet housing such sections. The following tables show this information when the cabinet uses three different thicknesses of heat transfer substance and when the cabinet is positioned in three different ambient temperatures.
The refrigeration system of the present invention may have other applications aside from use in connection with food and beverage articles and the invention may be implemented in a variety of configurations, using certain features or aspects of the several embodiments described herein and others known in the art. Thus, although the invention has been herein shown and described in what is perceived to be the most practical and preferred embodiments, it is to be understood that the invention is not intended to be limited to the specific features and embodiments set forth above. Rather, it is recognized that modifications may be made by one of skill in the art of the invention without departing from the spirit or intent of the invention and, therefore, the invention is to be taken as including all reasonable equivalents to the subject matter of the claims.
Number | Name | Date | Kind |
---|---|---|---|
1870685 | Lockwood | Aug 1932 | A |
1880735 | Bonine | Oct 1932 | A |
2353909 | Lager | Jul 1944 | A |
2508385 | Hall | May 1950 | A |
2633714 | Wehby | Apr 1953 | A |
2677244 | Wehby | May 1954 | A |
2677246 | Wehby | May 1954 | A |
2737782 | Antico | Mar 1956 | A |
3010289 | Kuklinski | Nov 1961 | A |
3057284 | Learmont | Oct 1962 | A |
3184926 | Blake | May 1965 | A |
3234748 | Quick | Feb 1966 | A |
3234753 | Quick | Feb 1966 | A |
3234754 | Quick | Feb 1966 | A |
3287925 | Kane et al. | Nov 1966 | A |
3464226 | Kramer | Sep 1969 | A |
3580006 | Quick | May 1971 | A |
3638450 | Falk | Feb 1972 | A |
3645109 | Quick | Feb 1972 | A |
3850714 | Adorjan | Nov 1974 | A |
3864936 | Frank et al. | Feb 1975 | A |
4325224 | Howland | Apr 1982 | A |
4327558 | Howland et al. | May 1982 | A |
4367634 | Bolton | Jan 1983 | A |
4505126 | Jones et al. | Mar 1985 | A |
4553584 | Bloomquist | Nov 1985 | A |
4565071 | Bartling et al. | Jan 1986 | A |
4685306 | Howland et al. | Aug 1987 | A |
4706468 | Howland et al. | Nov 1987 | A |
4711095 | Howland et al. | Dec 1987 | A |
4712383 | Howland et al. | Dec 1987 | A |
4748823 | Asano et al. | Jun 1988 | A |
4765150 | Persem | Aug 1988 | A |
4831835 | Beehler et al. | May 1989 | A |
4852365 | Elrod et al. | Aug 1989 | A |
4920758 | Janke et al. | May 1990 | A |
4944158 | Akiike et al. | Jul 1990 | A |
4979371 | Larson | Dec 1990 | A |
RE33620 | Persem | Jun 1991 | E |
5029450 | Takano et al. | Jul 1991 | A |
5048306 | Wakatsuki et al. | Sep 1991 | A |
5054295 | Goulooze | Oct 1991 | A |
5065587 | Howland et al. | Nov 1991 | A |
5081850 | Wakatsuki et al. | Jan 1992 | A |
RE34047 | Elrod et al. | Sep 1992 | E |
5269149 | Zeidler | Dec 1993 | A |
5315836 | Ressler | May 1994 | A |
5449232 | Westbrooks, Jr. et al. | Sep 1995 | A |
D365828 | Lacewell et al. | Jan 1996 | S |
D367864 | Lacewell | Mar 1996 | S |
D368394 | Rogers | Apr 1996 | S |
5567026 | Lacewell | Oct 1996 | A |
5771959 | Westbrooks, Jr. et al. | Jun 1998 | A |
5797445 | Westbrooks, Jr. et al. | Aug 1998 | A |
6000232 | Witten-Hannah et al. | Dec 1999 | A |
6170277 | Porter et al. | Jan 2001 | B1 |
6176095 | Porter | Jan 2001 | B1 |
6467293 | Goosman | Oct 2002 | B1 |
6564574 | Pereira et al. | May 2003 | B1 |
6606873 | Takeuchi | Aug 2003 | B2 |
6640569 | Goosman | Nov 2003 | B2 |
6662579 | Takano et al. | Dec 2003 | B2 |
6698210 | Ogura et al. | Mar 2004 | B2 |
20010039807 | Mogil | Nov 2001 | A1 |
20030012946 | Davis et al. | Jan 2003 | A1 |
20030046943 | Takano et al. | Mar 2003 | A1 |
20030066300 | Takeuchi | Apr 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20050217310 A1 | Oct 2005 | US |