The present invention relates generally to the field of temperature-controlled display devices (e.g., refrigerated display devices or cases, etc.) having a temperature-controlled space for storing and displaying products such as refrigerated foods or other perishable objects. More specifically, the present invention relates to refrigeration system for a temperature-controlled display device. More specifically still, the present invention relates to a refrigeration system for a temperature-controlled display device that uses a brushless DC motor to circulate a refrigerant within a refrigeration circuit.
Temperature-controlled display devices (e.g., refrigerators, freezers, refrigerated merchandisers, refrigerated display cases, etc.) may be used in commercial, institutional, and residential applications for storing or displaying refrigerated or frozen objects. Refrigerated display cases are a type of temperature-controlled storage device that are often used to display fresh food products (e.g., beef, pork, poultry, fish, etc.) in a supermarket or other commercial setting. Refrigerated display cases typically include cooling elements (e.g., cooling coils, heat exchangers, evaporators, etc.) that receive a coolant (e.g., a liquid such as a glycol-water mixture, a refrigerant, etc.) from a refrigeration system to provide cooling to the temperature-controlled space. Fans are typically used to move air over the cooling elements to facilitate heat transfer thereto. Some refrigerated display cases have doors that can be opened (e.g., by a customer) to access products within the temperature-controlled space. Other refrigerated display cases have an open front and use fans to create an air barrier (e.g., an air curtain) to prevent outside air from entering the temperature-controlled space.
Some commercial refrigeration systems (e.g., in a supermarket) use centralized parallel compressor systems with long liquid and suction branches piped to and from the evaporators in the refrigerated display cases. However, remotely locating elements of the refrigeration system (e.g., compressors, condensers) can result in expensive field piping, large refrigerant charge and leakage, and parasitic heating of the liquid and suction piping. Other commercial refrigeration systems use self-contained refrigerated display cases that include all of the components of the refrigeration system (e.g., contained within a housing of the display case, positioned on top of the display case, etc.).
The compressors used in conventional refrigeration systems often suffer from a variety of disadvantages such as a lack of variable capacity, energy inefficiency, excess noise, etc. It would be desirable to provide a refrigerated display case with an improved compressor that overcomes these and other disadvantages.
The present disclosure generally relates to a temperature-controlled displays and refrigeration systems for temperature-controlled displays. One exemplary embodiment relates to a refrigeration system that includes a refrigeration circuit, a cooling circuit and a reclaim heat circuit. The refrigeration circuit includes a first heat exchanger and a cooling unit in fluid communication with each other using a first working fluid. The cooling unit is arranged to cool air circulated in a temperature-controlled display. The cooling circuit includes a second heat exchanger in thermal communication with the first heat exchanger using a second working fluid to transfer heat from the first working fluid to the second working fluid. The reclaim heat circuit is in fluid communication with the cooling circuit and includes one or more reclaim heat loads. The reclaim heat circuit is arranged to transfer heat from the second working fluid to the one or more reclaim heat loads.
Another exemplary embodiment relates to a refrigeration system that includes a refrigeration circuit, a cooling circuit, a reclaim heat circuit, and a floor heating system. The refrigeration circuit includes a compressor driven by a brushless DC motor operable at multiple different speeds, a first heat exchanger, an expansion device, and a cooling unit in fluid communication using a first working fluid. The cooling unit is arranged to cool a temperature-controlled storage device. The cooling circuit includes a pump and a second heat exchanger in thermal communication with the first heat exchanger using a second working fluid such that the first heat exchanger is liquid-cooled by the second working fluid. The reclaim heat circuit is in fluid communication with the cooling circuit. The floor heating system is coupled to the heat reclaim circuit as a reclaim heat load.
Another exemplary embodiment relates to a refrigeration system that includes a refrigeration circuit, a cooling circuit, a reclaim heat circuit, and an auxiliary heating system. The refrigeration circuit includes a compressor driven by a brushless DC motor operable at multiple different speeds, a first heat exchanger, an expansion device, and a cooling unit in fluid communication using a first working fluid, the cooling unit arranged to cool a temperature-controlled storage device. The cooling circuit includes a pump and a second heat exchanger in fluid communication with the first heat exchanger using a second working fluid such that the first heat exchanger is liquid-cooled by the second working fluid. The reclaim heat circuit is in fluid communication with the cooling circuit. The auxiliary heating system is coupled to the heat reclaim circuit as a reclaim heat load.
These and other embodiments can each optionally include one or more of the following features.
Some embodiments include a controller configured to control operation at least one of the reclaim heat loads.
In some embodiments, the controller is configured to control operation of the at least one of the reclaim heat loads including by operating a valve in the reclaim heat circuit to adjust a flow of the second working fluid to the at least one of the reclaim heat loads.
In some embodiments, the controller is configured to balance a flow of the second working fluid between the at least one of the reclaim heat loads and a second heat exchanger in the cooling circuit responsive to changes in operation of the at least one of the reclaim heat loads.
In some embodiments, the heat reclaim circuit includes a temperature sensor arranged to measure a temperature of the second working fluid at an outlet of the at least one of the reclaim heat loads, where the controller is configured to operate the valve to control the flow of the second working fluid to the at least one of the reclaim heat loads responsive to the temperature measured by the temperature sensor.
In some embodiments, the heat reclaim circuit includes a first temperature sensor arranged to measure an inlet temperature of the second working fluid at an inlet of at least one of the reclaim heat loads and a second temperature sensor arranged to measure an outlet temperature of the second working fluid at an outlet of the at least one of the reclaim heat loads, where the controller is configured to operate the valve to control the flow of the second working fluid to the at least one of the reclaim heat loads responsive to a difference in temperature between the inlet temperature and the outlet temperature of the at least one of the reclaim heat loads.
Another exemplary embodiment relates to a refrigeration system for a temperature-controlled storage device. The refrigeration system includes a refrigeration circuit, a cooling circuit, and a controller. The refrigeration circuit includes a compressor driven by a brushless DC motor operable at multiple different speeds, a first heat exchanger, an expansion device, and a cooling unit in fluid communication via a first working fluid. The cooling circuit includes a pump and a second heat exchanger in fluid communication with the first heat exchanger via a second working fluid such that the first heat exchanger is liquid-cooled by the second working fluid. The controller operates the brushless DC motor at multiple different speeds to accommodate multiple different thermal loads experienced by the refrigeration system. Each of the speeds corresponds to a different thermal load. The controller modulates the speed of the brushless DC motor to maintain a desired temperature of a temperature-controlled space within the temperature-controlled device.
In some embodiments, the refrigeration circuit further includes a first fan that provides an airflow across the cooling unit to cool the airflow. The cooled airflow may be provided to the temperature-controlled space within the temperature-controlled device. In some embodiments, the controller modulates a speed of the first fan to modulate a rate of heat transfer experienced by the temperature-controlled space to maintain the desired temperature of the temperature-controlled space.
In some embodiments, the controller operates the expansion device to control a flow rate of the first working fluid passing therethrough and entering the cooling unit to modulate a rate of heat transfer experienced by the airflow flowing across the cooling unit to maintain the desired temperature of the temperature-controlled space.
In some embodiments, the controller modulates the speed of the brushless DC motor to control a flow rate of the first working circulating through the refrigeration circuit to modulate a rate of heat transfer experienced by the airflow flowing across the cooling unit to maintain the desired temperature of the temperature-controlled space.
In some embodiments, the cooling circuit further includes a second fan that provides an airflow across the second heat exchanger to cool the second working fluid. In some embodiments, the controller modulates a speed of the second fan to modulate a rate of heat transfer experienced by the second working fluid flowing through the second heat exchanger. The second working fluid may absorb heat from the first working fluid in the first heat exchanger to maintain the desired temperature of the temperature-controlled space.
In some embodiments, the controller modulates a speed of the pump to control a flow rate of the second working fluid circulating through the cooling circuit to modulate a rate of heat transfer from the first working fluid to the second working fluid in the first heat exchanger to maintain the desired temperature of the temperature-controlled space.
In some embodiments, the expansion device is an expansion valve configured to adjust expansion of the first working fluid passing therethrough. In some embodiments, the brushless DC motor is liquid-cooled.
Another exemplary embodiment relates to a refrigeration circuit for a temperature-controlled storage device. The refrigeration circuit includes a compressor, a variable-speed brushless DC motor, a heat exchanger, an expansion device, a cooling unit, and a controller. The compressor circulates a working fluid through the refrigeration circuit and is driven by the variable-speed brushless DC motor. The heat exchanger receives the working fluid from the compressor and provides cooling for the working fluid. The expansion device receives the cooled working fluid from the heat exchanger and expands the working fluid to a lower-temperature state. The cooling element receives the expanded working fluid from the expansion device and provides the working fluid to the compressor. The controller operates the variable-speed brushless DC motor at multiple different speeds to accommodate multiple different thermal loads. Each of the speeds corresponds to a different thermal load. The controller modulates the speed of the brushless DC motor to maintain a desired temperature of a temperature-controlled space within the temperature-controlled device. The compressor, the heat exchanger, the expansion device, and the cooling element are in fluid communication via the working fluid.
In some embodiments, the refrigeration circuit includes a fan that provides an airflow across the cooling element to cool the airflow. The cooled airflow may be provided to the temperature-controlled space within the temperature-controlled device.
In some embodiments, the controller modulates a speed of the fan to modulate a rate of heat transfer experienced by the temperature-controlled space to maintain the desired temperature of the temperature-controlled space.
In some embodiments, the controller operates the expansion device to control a flow rate of the working fluid passing therethrough and entering the cooling element to modulate a rate of heat transfer experienced by the airflow flowing across the cooling element to maintain the desired temperature of the temperature-controlled space.
In some embodiments, the controller modulates the speed of the variable speed brushless DC motor to control a flow rate of the working fluid circulating through the refrigeration circuit to modulate a rate of heat transfer experienced by the airflow flowing across the cooling element to maintain the desired temperature of the temperature-controlled space.
In some embodiments, the refrigeration circuit includes a fan that provides an airflow across the heat exchanger to cool the working fluid flowing therethrough such that the heat exchanger is air-cooled. The controller may modulate a speed of the fan to modulate a rate of heat transfer experienced by the working fluid flowing through the heat exchanger to maintain the desired temperature of the temperature-controlled space.
In some embodiments, the refrigeration circuit includes a pressure sensor configured to measure a pressure of the working fluid at an inlet of the heat exchanger. The controller may modulate a speed of the fan to control the pressure of the working fluid at the inlet of the heat exchanger.
In some embodiments, the heat exchanger is liquid-cooled with a second working fluid. The controller may modulate a flow rate of the second working fluid with a valve to modulate a rate of heat transfer between the first working fluid and the second working fluid flowing through the heat exchanger to maintain a desired pressure of the first working fluid at an inlet of the heat exchanger.
In some embodiments, the expansion device is an expansion valve configured to adjust expansion of the first working fluid passing therethrough. In some embodiments, the variable-speed brushless DC motor is liquid-cooled.
Still another exemplary embodiment relates to a refrigeration circuit for a temperature-controlled storage device. The refrigeration circuit includes a brushless DC motor operable at multiple different speeds and a controller. The brushless DC motor drives a compressor that circulates a working fluid through the refrigeration circuit. The controller operates the brushless DC motor at multiple different speeds to accommodate multiple different thermal loads. Each of the speeds corresponds to a different thermal load. The controller modulates the speed of the brushless DC motor to maintain a desired temperature of a temperature-controlled space within the temperature-controlled device.
In some embodiments, the refrigeration circuit includes a cooling unit and a fan. The cooling unit may be configured to provide cooling for the temperature-controlled space by transferring heat from the temperature-controlled space to the working fluid. The fan may provide an airflow across the cooling unit to cool the airflow. The cooled airflow may be provided to the temperature-controlled space within the temperature-controlled storage device.
In some embodiments, the controller modulates a speed of the fan to modulate a rate of heat transfer experienced by the temperature-controlled space to maintain the desired temperature of the temperature-controlled space. In some embodiments, the controller modulates the speed of the brushless DC motor to control a flow rate of the working fluid circulating through the refrigeration circuit.
In some embodiments, the refrigeration circuit includes a heat exchanger and a pressure sensor. The heat exchanger may be configured to provide cooling for the working fluid. The pressure sensor may be configured to measure a pressure of the working fluid at an inlet of the heat exchanger. The controller may modulate a speed of the fan to control the pressure of the working fluid at the inlet of the heat exchanger.
In some embodiments, the heat exchanger is liquid-cooled with a second working fluid. The controller may modulate a flow rate of the second working fluid with a valve to modulate a rate of heat transfer between the working fluid and the second working fluid flowing through the heat exchanger to maintain a desired pressure of the working fluid at an inlet of the heat exchanger.
The invention is capable of other embodiments and of being carried out in various ways. Alternative exemplary embodiments relate to other features and combinations of features as may be recited herein.
Referring generally to the FIGURES, a refrigeration system with a brushless DC motor compressor drive and components thereof are shown, according to various exemplary embodiments. The refrigeration system may be used in conjunction with a temperature-controlled display device (e.g., a refrigerated merchandiser) or other refrigeration device used to store and/or display refrigerated or frozen objects in a commercial, institutional, or residential setting. The refrigeration system includes a heat exchanger (e.g., a gas cooler, a condenser), an expansion valve, a cooling unit (e.g., an evaporator), and a compressor. The compressor is driven by a brushless DC motor which may be controlled by an electronic controller. In some embodiments, brushless DC motors are also used to drive other components of the refrigeration system (e.g., pumps, fans, etc.).
Advantageously, using a brushless DC motor to drive the compressor provides a number of advantages over conventional refrigeration systems. For example, using a brushless DC motor to drive a refrigeration compressor may significantly reduce the power consumption of the refrigeration system relative to compressors that use traditional brushed and/or AC motors. The decreased power consumption results in an increased compressor efficiency and decreases the total cost of operating the refrigeration system. The brushless DC motor also has a decreased susceptibility to wear and an increased reliability relative to traditional compressor motors. Additionally, the brushless DC motor can be operated (e.g., by the controller) at various speeds to allow the same compressor to accommodate varying refrigeration loads in an energy efficient manner. These and other advantages of a refrigeration system with a brushless DC motor compressor drive are described in greater detail below.
Referring now to
Temperature-controlled display device 10 is shown as a refrigerated display case having a top 12, bottom 14, back 16, front 18, and sides 20-22 that at least partially define a temperature-controlled space 24 within which refrigerated or frozen objects can be stored. In some embodiments, front 18 is at least partially open (as shown in
Temperature-controlled display device 10 is shown to include a plurality of shelves 26-27 upon which refrigerated or frozen objects can be placed for storage and/or display. Shelves 26 may be located at various heights within temperature-controlled space 24. Shelf 27 defines a lower boundary of temperature-controlled space 24 and separates temperature-controlled space 24 from a lower space 32 within which various components of a refrigeration circuit for temperature-controlled display device 10 may be contained.
Space 32 is shown to include a cooling element 28 and a fan 30. Cooling element 28 may include a cooling coil, a heat exchanger, an evaporator, or other component configured to provide cooling for temperature-controlled space 24. Cooling element 28 may be part of a refrigeration circuit (e.g., refrigeration circuit 50, 80, and/or 100, shown in
Referring particularly to
Referring now to
Compressor 60 may be configured to circulate a refrigerant through refrigeration circuit 52. Compressor 60 may compress the refrigerant to a high pressure, high temperature state and discharge the compressed refrigerant into line 66. Compressor 60 may be a reciprocating compressor, a scroll compressor, a rotary compressor, or any other type of compressor that can be used to compress the refrigerant. In some embodiments, compressor 60 is driven by a brushless DC motor. Advantageously, using a brushless DC motor with compressor 60 enables compressor 60 to operate at variable speeds and/or capacities. In some embodiments, the brushless DC motor and/or compressor 60 are liquid (e.g., water, glycol, etc.) cooled. In other embodiments, the brushless DC motor and/or compressor 60 are air cooled. In still other embodiments, at least one of the brushless DC motor and compressor 60 are liquid and air cooled. In some embodiments, compressor 60 is operated by a controller 62. Controller 62 may adjust the speed of compressor 60 based on the refrigeration load (e.g., to control a flow rate of the working fluid to modulate a rate of heat transfer to airflow 34 to maintain a desired temperature of the temperature-controlled space 24, etc.). Since the speed of compressor 60 is adjustable, a single compressor 60 can be used for a variety of applications and can accommodate multiple different refrigeration loads without sacrificing energy efficiency. Other features and advantages of the brushless DC motor are described in greater detail below.
Heat exchanger 54 may be configured to cool the compressed refrigerant in line 66. In various embodiments, heat exchanger 54 may be a gas cooler (i.e., a heat exchanger configured to remove heat from gaseous refrigerant without causing condensation) or a condenser (i.e., a heat exchanger configured to condense a gaseous refrigerant to a liquid or mixed gas-liquid state). In refrigeration system 50, heat exchanger 54 is an air-cooled heat exchanger which transfers heat from the compressed refrigerant into an airflow 68 caused by a fan 64. Fan 64 may be controlled by controller 62 to modulate the rate of heat transfer in heat exchanger 54 (e.g., between the working fluid and the airflow 68, etc.). In some embodiments, fan 64 is a variable speed fan capable of operating at multiple different speeds. Controller 62 may increase or decrease the speed of fan 64 in response to various inputs from refrigeration circuit 50 (e.g., temperature measurements, pressure measurements, humidity measurements, enthalpy measurements, etc.). For example, a pressure sensor 67 may be located at the inlet of heat exchanger 54. Pressure sensor 67 may be configured to measure the pressure of the working fluid in line 66, at the inlet of heat exchanger 54. Controller 62 may be configured to modulate the speed of fan 64 to control the pressure of the working fluid at the inlet of heat exchanger 54 (i.e., the pressure measured by pressure sensor 67).
Still referring to
Cooling element 28 may be the same as described with reference to
Referring now to
Liquid-cooled heat exchanger 94 receives the compressed refrigerant from line 66. Liquid-cooled heat exchanger 94 also receives a separate heat exchange fluid (e.g., water, glycol, etc.) from cooling circuit 84 and transfers heat from the compressed refrigerant into the heat exchange fluid in cooling circuit 84. Cooling circuit 84 is shown to include a pump 86 which operates to circulate the heat exchange fluid between heat exchanger 94 and another heat exchanger 92. Pump 86 may be controlled by controller 62 to modulate a flow rate of the heat exchange fluid throughout cooling circuit 84 to thereby modulate the rate of heat transfer from the heat exchange fluid into airflow 90 (e.g., within heat exchanger 92, etc.). In some embodiments, controller 62 is configured to operate a valve 95 of cooling circuit 84 to modulate the flow rate of the heat exchange fluid through cooling circuit 84. Controller 82 may operate valve 95 to maintain a desired pressure and/or temperature of the working fluid in refrigeration circuit 82 at the inlet of heat exchanger 94 (e.g., the pressure measured by pressure sensor 67).
In heat exchanger 92, the heat exchange fluid rejects the absorbed heat to an airflow 90 passing over or through heat exchanger 92. In some embodiments, airflow 90 is created by operation of a fan 88. Fan 88 may be controlled by controller 62 to modulate the rate of heat transfer from the heat exchange fluid into airflow 90 (e.g., within heat exchanger 92, etc.). In some embodiments, heat exchanger 92 and/or heat exchanger 94 is a heat-reclaim heat exchanger configured to use the heat absorbed from the compressed refrigerant for heating purposes (e.g., heating water, providing heat to a space, melting frost or ice, anti-condensate heating for display device 10, etc.).
In some embodiments, compressor 60 and/or the DC brushless motor of compressor 60 are liquid cooled by the cooling circuit 84 (e.g., via the separate heat exchange fluid, etc.). For example, the heat exchange fluid that circulates within cooling circuit 84 may be used to provide direct liquid cooling for compressor 60 and/or the brushless DC motor that drives compressor 60. In some embodiments, the heat exchange fluid from cooling circuit 84 is routed to compressor 60 before or after passing through heat exchanger 94 such that the heat exchange fluid absorbs heat from both heat exchanger 94 and compressor 60 in series. In other embodiments, the heat exchange fluid from cooling circuit 84 may be routed to compressor 60 in parallel with heat exchanger 94 such that a first portion of the heat exchange fluid absorbs heat from heat exchanger 94 and a second portion of the heat exchange fluid absorbs heat from compressor 60 and/or the brushless DC motor that drives compressor 60.
In some embodiments, compressor 60 and/or the brushless DC motor are liquid cooled by a second cooling circuit separate from cooling circuit 84. The second cooling circuit may be the same or similar to cooling circuit 84, with the exception that the second cooling circuit absorbs heat from compressor 60 and/or the brushless DC motor rather than from heat exchanger 94. In other embodiments, compressor 60 and/or the brushless DC motor are air cooled. For example, a fan (e.g., similar to fans 30 and 88) may be included in refrigeration circuit 80 and used to force an airflow across compressor 60 and/or the brushless DC motor. The airflow may absorb heat from compressor 60 and/or the brushless DC motor to provide cooling for such components.
Referring now to
Compressors 60 may be arranged in parallel and may be configured to circulate a refrigerant through refrigeration circuit 102. In some embodiments, compressors 60 are operated by controller 62. Compressors 60 may compress the refrigerant to a high pressure, high temperature state and discharge the compressed refrigerant into line 66. In some embodiments, each of compressors 60 is driven by a brushless DC motor, as described with reference to
Heat exchangers 54 may be arranged in parallel and may be configured to cool the compressed refrigerant in line 66. In various embodiments, heat exchangers 54 may be gas coolers (i.e., heat exchangers configured to remove heat from gaseous refrigerant without causing condensation) or condensers (i.e., heat exchangers configured to condense a gaseous refrigerant to a liquid or mixed gas-liquid state). In some embodiments, heat exchangers 54 are air-cooled heat exchangers (as shown in
Expansion valves 56 may be arranged in parallel and may be configured to expand the refrigerant in line 70 to a low temperature and low pressure state. Expansion valves 56 may be fixed position valves or variable position valves. Expansion valves 56 may be actuated manually or automatically (e.g., by controller 62 via a valve actuator) to adjust the expansion of the refrigerant passing therethrough. In some embodiments, expansion valves 56 may be operated as fluid control valves to direct the refrigerant through a subset of cooling elements 28. Each of expansion valves 56 may be positioned upstream of a corresponding cooling element 28. Cooling elements 28 function to absorb heat from airflow 34 passing over or through cooling elements 28 and into temperature-controlled space 24. Cooling elements 28 output the refrigerant into line 74, which connects to the suction side of compressors 60.
Referring again to
Controller 62 may receive input from various sensory devices of refrigeration systems 50, 80, and 100 (e.g., temperature sensors, humidity sensors, pressure sensors, enthalpy sensors, voltage sensors, proximity sensors, etc.) Sensors may be disposed at any location relative to temperature-controlled display device 10. For example, sensors may be positioned along any of lines 66-74, within temperature-controlled space 24, within cooling circuit 84, or otherwise positioned to measure any variable state or condition of temperature-controlled display device 10. Controller 62 may use the sensory inputs to determine appropriate control outputs for the operable components of refrigeration systems 50, 80, and 100.
In some embodiments, controller 62 receives input from the sensory devices via a communications interface. The communications interface may include wired or wireless interfaces (e.g., jacks, antennas, transmitters, receivers, transceivers, wire terminals, etc.) for conducting data communications with various systems, devices, or networks. For example, the communications interface may include an Ethernet card and port for sending and receiving data via an Ethernet-based communications network. In another example, the communications interface may include a WiFi transceiver for communicating via a wireless communications network. The communications interface may be configured to communicate via local area networks or wide area networks (e.g., the Internet, a building WAN, etc.) and may use a variety of communications protocols (e.g., TCP/IP, point-to-point, etc.).
In some embodiments, controller 62 uses the communications interface to send control signals to various operable components of refrigeration systems 50, 80, and 100. For example, controller 62 may send control signals to compressors 60, fans 30, 64, and 88, valves 56, pump 86, and/or other operable components of refrigeration systems 50, 80, and 100 (e.g., flow control valves, pressure regulation valves, etc.). In some embodiments, controller 62 uses the communications interface to communicate with other components of temperature-controlled display device 10 such as an anti-condensate heaters, a lighting element, a condensate dissipation system, and/or other auxiliary components.
In some embodiments, controller 62 includes a processing circuit having a processor and memory. The processor may be a general purpose or specific purpose processor, an application specific integrated circuit (ASIC), one or more field programmable gate arrays (FPGAs), a group of processing components, or other suitable processing components. The processor may be configured to execute computer code or instructions stored in memory or received from other computer readable media (e.g., CDROM, network storage, a remote server, etc.). Memory may include one or more devices (e.g., memory units, memory devices, storage devices, etc.) for storing data and/or computer code for completing and/or facilitating the various processes described in the present disclosure. Memory may include random access memory (RAM), read-only memory (ROM), hard drive storage, temporary storage, non-volatile memory, flash memory, optical memory, or any other suitable memory for storing software objects and/or computer instructions. Memory may include database components, object code components, script components, or any other type of information structure for supporting the various activities and information structures described in the present disclosure. Memory may be communicably connected to the processor via the processing circuit and may include computer code for executing one or more processes described herein.
In some embodiments, temperature-controlled display device 10 is a self-contained refrigeration unit which includes all of the components of the refrigeration system. Various components of refrigeration systems 50, 80, and 100 may be located within temperature-controlled display device 10 or proximate to temperature-controlled display device 10. For example, cooling elements 28 and expansion valves 56 may be located within space 32 and/or temperature-controlled space 24 as shown in
In other embodiments, temperature-controlled display device 10 is part of a distributed refrigeration system. In a distributed refrigeration system, cooling elements 28 are located within temperature-controlled space 24, whereas other components of refrigeration systems 50, 80, and 100 may be remotely located. Refrigerant lines 66 and 70-74 may extend between temperature-controlled display device 10 and the remote location to connect various components of refrigeration systems 50, 80, and 100.
In some embodiments, the refrigeration system used by temperature-controlled display device 10 includes a compressor (e.g., compressor 60) that is driven by a brushless DC motor. Brushless DC motors (BLDC motors, BL motors) also known as electronically commutated motors (ECMs, EC motors) are synchronous motors that are powered by a DC electric source via an integrated inverter/switching power supply. The integrated inverted/switching power supply produces an AC electric signal to drive the motor. In this context, AC (alternating current) does not imply a sinusoidal waveform, but rather a bi-directional current with no restriction on waveform. Additional sensors and electronics control the inverter output amplitude and waveform (and therefore percent of DC bus usage/efficiency) and frequency (i.e. rotor speed). The rotor of a brushless motor is often a permanent magnet synchronous motor, but can also be a switched reluctance motor or induction motor. In some embodiments, the coils of the brushless DC motor are stationary.
Brushless DC motors provide a number of advantages over traditional brushed DC motors. For example, brushed DC motors develop a maximum torque when stationary, linearly decreasing as velocity increases. Brushless DC motors are often higher efficiency and have a lower susceptibility to mechanical wear. A brushless motor has permanent magnets which rotate around a fixed armature, eliminating problems associated with connecting current to the moving armature. An electronic controller (e.g., controller 62) replaces the brush/commutator assembly of the brushed DC motor, which continually switches the phase to the windings to keep the motor turning. Controller 62 may perform similar timed power distribution by using a solid-state circuit rather than the brush/commutator system.
Brushless motors can provide more torque per weight, more torque per watt (increased efficiency), increased reliability, reduced noise, longer lifetime (no brush and commutator erosion), elimination of ionizing sparks from the commutator, and overall reduction of electromagnetic interference (EMI) relative to a brushed motor. With no windings on the rotor, brushless motors are not subjected to centrifugal forces. Since the windings are supported by the housing, brushless motors can be cooled by conduction, requiring no airflow inside the motor for cooling. This in turn means that the motor's internals can be entirely enclosed and protected from dirt or other foreign matter.
Brushless motor commutation can be implemented in software using a microcontroller (e.g., controller 62) or microprocessor computer, or may alternatively be implemented in analogue hardware, or in digital firmware using an FPGA. Commutation with electronics instead of brushes allows for greater flexibility and capabilities not available with brushed DC motors, including speed limiting, micro stepped operation for slow and/or fine motion control, and a holding torque when stationary.
When converting electricity into mechanical power, brushless motors are more efficient than brushed motors. This improvement is largely due to the brushless motor's velocity being determined by the frequency at which the electricity is switched, not the voltage. Additional gains are due to the absence of brushes, which reduces mechanical energy loss due to friction. The enhanced efficiency is greatest in the no-load and low-load region of the motor's performance curve. Advantageously, the use of a brushless DC motor in refrigeration systems 50, 80, and/or 100 may facilitate maintenance-free operation, high speeds, and operation where sparking is hazardous (i.e. explosive environments) or could affect electronically sensitive equipment.
Controller 62 may direct the rotor rotation of the brushless DC motor and may be configured to detect the rotor's orientation/position (relative to the stator coils). For example, controller 62 may use Hall effect sensors or a rotary encoder to directly measure the rotor's position. In other embodiments, controller 62 may measure the back EMF in the undriven coils to infer the rotor position, eliminating the need for separate Hall effect sensors. Controller 62 may provide the brushless DC motor with bi-directional outputs (i.e. frequency controlled three phase output), which are determined by controller 62. In various embodiments, controller 62 may use comparators to determine when the output phase should be advanced or use a microcontroller to manage acceleration, control speed, and fine-tune efficiency.
In some embodiments, the brushless DC motor may constructed using an inrunner configuration or an outrunner configuration. In the inrunner configuration, the permanent magnets are part of the rotor and three stator windings surround the rotor. In the outrunner (or external-rotor) configuration, the radial-relationship between the coils and magnets is reversed; the stator coils form the center (core) of the motor, while the permanent magnets spin within an overhanging rotor which surrounds the core. The outrunner configuration may include more poles than the inrunner configuration (e.g., set up in triplets to maintain the three groups of windings) and may have a higher torque at low RPMs. In some embodiments, the brushless DC motor may be constructed using stator and rotor plates mounted face to face (e.g., for embodiments in which the space or shape of the motor is limited).
In some embodiments, the brushless DC motor uses a delta configuration for the electrical windings. The delta configuration connects three windings to each other (series circuits) in a triangle-like circuit, and power is applied at each of the connections. In other embodiments, the brushless DC motor uses a Wye (Y-shaped) configuration or star winding. The Wye configuration connects all of the windings to a central point (parallel circuits) and power is applied to the remaining end of each winding. A motor with windings in the delta configuration gives low torque at low speed, but can give higher top speed. The Wye configuration gives high torque at low speed, but a lower top speed. Controller 62 may treat both styles of windings in the same manner when providing control signals to the brushless DC motor.
It is contemplated that a brushless DC motor may provide advantages to refrigeration systems 50, 80, and 100 over conventional AC motors. For example, the brushless DC motor may significantly reduce the power required to operate compressors 60 relative to a typical AC motor. Fans 30, 64, and 88 can also be operated using a brushless DC motor in order to increase overall system efficiency. In addition to the brushless motor's higher efficiency, refrigeration systems 50, 80, and 100 can take advantage of a brushless DC motor's variable-speed and/or load modulation to adaptively operate compressors 60 to accommodate varying refrigeration loads. The use of controller 62 to control the brushless DC motor allows for programmability, better control over fluid flow (e.g., refrigerant flow, airflow, etc.), and serial communication.
Referring to
In some embodiments, valve 606 is added to cooling circuit 84. Valve 606 is used to control the flow of heat exchange fluid through heat exchanger 92 which is not part of a reclaim heat load. Valve 606 can be a remote operated value controlled by controller 62. For example, controller 62 can operate valve 606 to initiate flow of heat exchange fluid to heat exchanger 92, secure flow to the heat exchanger 92, or to modulate the flow of heat exchange fluid to heat exchanger 92.
In some embodiments, controller 62 can operate valves 604 and 606 to balance the heat load between heat exchanger 92 and heat reclaim circuit 600. For example, controller 62 can operate valves 604 and 606, and optionally valve 95 (as discussed above), to control flow within cooling circuit 84 and reclaim heat circuit 600 to manage the heat provided to reclaim heat loads 602 and maintain proper cooling for refrigeration circuit 82. For example, reclaim heat circuit 600 can include a temperature sensor 610 to monitor the temperature of heat exchange fluid at the outlet of the reclaim heat load(s) 602. Controller 62 can operate valves 604 and 606 to balance the flow of heat exchange fluid through cooling circuit 84 and reclaim heat circuit 600 maintain a desired outlet temperature as measured by temperature sensor 610. In some embodiments, the heat reclaim circuit 600 can include temperature sensors at the inlet of the heat reclaim load(s) 602 or at the both the inlet and outlet of the heat reclaim load(s) 602. Controller 62 can operate either one or both of valves 604 and 606 to balance the flow of the heat exchange fluid through cooling circuit 84 and reclaim heat circuit 600 to maintain a desired temperature difference across the reclaim heat load(s) 602.
Referring to
In some embodiments, condensation control system 702 includes a heat exchanger 710 in fluid communication with reclaim heat circuit 600. For example, the heat exchanger 710 is a reclaim heat load 602 in reclaim heat circuit 600. Condensation control system 702 includes one or more fans 712 arranged to cause airflow through or over heat exchanger 710 and into airflow path 708. Fan 712 can be controlled by controller 62 to adjust the airflow 706 across transparent panel 704. In some embodiments, controller 62 can adjust the airflow 706 responsive to output from one or more condensation and/or humidity sensors on the transparent panel 704. For example, controller 62 isolate the condensation control system 702 and stop operation of the fan 712 when no condensation is detected on the transparent panel 704. Controller 62 can isolate the condensation control system 702 by shutting one of valves 604 or 630A-630N, or operating three-way valve 608, depending on the configuration of the reclaim heat circuit 600. In some embodiments, reclaim heat loads 602, such as condensation control system 702, can have an individual controller separate from controller 62.
When controller 62 receives a signal from a condensation sensor indicating the formation of condensation, controller 62 can initiate condensation control system 702. For example, controller can open or throttle open one of valves 604, 608, or 630A-630N (depending on the configuration of the reclaim heat circuit 600) to initiate flow of the heat exchange fluid from cooling circuit 84 into heat exchanger 710, and turn on fan 712 to initiate a warm airflow 706 across the surface of transparent panel 704. In some embodiments, controller 62 can modulate the speed of the fan 712 and or the flow of the heat exchange fluid (e.g., throttling one of valves 604, 608, or 630A-630N) in response to signals from one or more condensation sensors.
When initiating, adjusting, or securing flow of the heat exchange fluid from the condensation control system 702 (or any reclaim heat load 602), controller 62 can operate valve 604 concurrently to balance the flow of the heat exchange fluid and the heat balance the heat load between heat exchanger 92 and heat reclaim circuit 600. For example, controller 62 can balance the flow of heat exchange fluid between heat exchanger 92 and heat reclaim circuit 600 to maintain proper cooling for the refrigeration circuit 82 when changes are made to the operation of condensation control system 702 (or any reclaim heat load 602).
Temperature-controlled display case 800 includes one or more doors 801. Doors 801 include a transparent panel, e.g., a glass panel (see
In some embodiments, condensation control system 802 includes a heat exchanger 803 in fluid communication with reclaim heat circuit 600. For example, the heat exchanger 803 is a reclaim heat load 602 in reclaim heat circuit 600. Condensation control system 802 includes one or more fans 805 arranged to cause airflow through or over heat exchanger 803 and into airflow paths 804, 810. Fan 806 can be controlled by controller 62 to adjust the airflow 806 across or through doors 801. In some embodiments, controller 62 can adjust the airflow 806 responsive to output from one or more condensation and/or humidity sensors on one or more of the doors 801.
In some embodiments, the airflow 806 is directed through exit vents at the bottom of doors 801, described in more detail below. In such embodiments, the air can be directed out of the doors and then exhausted out of the display case 800 thorough vents 808 at the base of the display case 800.
Panel assembly 905 can include two or more transparent panels arrange to form an assembly that provides thermal insulation between the interior and exterior of a display case (e.g., display case 800 of
Door 801 includes one or more inlet airflow vents 906 and one or more outlet airflow vents 908. For example, inlet airflow vents 906 can be located at the top edge of the door 801 and outlet airflow vents 908 can be located at the bottom of the door 801. In some embodiments, the inlet and outlet vents can be reversed with the inlet vents 906 on the bottom and the outlet vents 908 on the top.
Inlet and outlet airflow vents 906, 908 direct airflow through door 801 to prevent or clear condensation that may build up on a surface of one of the panels of panel assembly 905. For example, when a door 801 is opened moisture in the environment exterior to a display case 800 may condense on the cool inner surface of an interior panel. A warm flow of air can be provided by the condensation control system 802 and directed into the inlet vents 906. Inlet vents 906 direct the supply airflow 910 between two panes of the panel assembly 905. The warm airflow temporarily heats the inner panel and to cause the condensation to re-evaporate and clear the door 801. The airflow 912 exits the panel assembly 905 though the outlet vents 908.
In some embodiments, the inlet and outlet vents can include one-way valves to prevent circulation of ambient air through the panel assembly during time periods that the warm airflow from the condensation control system 802 is not needed. For example, the one-way valves can be pressure controlled check valves that require a pressure above a threshold value to open the valves. The condensation control system 802 can be configured to provide the warm airflow at pressure greater than the opening pressure required to operate the one-way valves. The one way valves may prevent convection currents from building within the panel assembly that would continually draw ambient air into the panel assembly that may reduce the insulating capabilities of the door 801. When closed the one-way valves will trap air between panes of the panel assembly 905 and allow the air to cool to an equilibrium temperature relative to the temperature within the display case 800.
In some embodiments with three panels, the gap between one set of panels is sealed and filled with an insulated material and the gap between a second set of panels is in fluid communication with one or more airflow inlet vents 906 and one or more outlet airflow vents 908. For example, a gap between an outer pane and a middle pane can be sealed and filled with an insulating gas. A gap between the middle pane and an inner pane can be in fluid communication with the inlet and outlet vents 906, 908 to permit airflow from the condensation control system 802 to pass therethrough.
In some embodiments, the condensation control system 802 can be controlled in response to a door opening. For example, controller 62 can control operation of the condensation control system 802 in response to a door open/close sensor. It may not be necessary (or desired) to continuously provide a warm flow of air through the doors 801 of a temperature-controlled display case 800. Rather, controller 62 can control the fans 805 of the condensation control system 802 to provide a flow of warm air through or across each door 801 once a door sensor defects that a door was opened an then closed to clear any condensation that may have formed on the door 801. In some embodiments, the airflow paths 804, 810 can include remotely operated dampeners configurable to direct the airflow only to a door 801 (or set of doors) that was recently opened and closed. For example, controller 62 can detect which door 801 was open (e.g., by identifying which door sensor that was triggered) and configure the dampeners to open airflow paths only to the door that was opened. In some embodiments, an individual condensation control system 802 can be associated with each door 801 of a display case 800.
Floor heating system 1000 includes a flooring material 1002 and a heat exchanger 1004 installed or embedded therein. Heat exchanger 1004 can be a fluid channel arranged in serpentine pattern within the flooding material 1002 to transfer heat from the heat exchange fluid of the reclaim heat circuit 600 into the flooring material. Controller 62 can control the flow rate of the heat from the heat exchange fluid through the heat exchanger 1004 to raise the surface temperature of the flooring material 1004 above freezing. For example, controller 62 can control the flow rate by throttling one of valves 604, 608, or 630A-630N.
In some embodiments, heat exchanger 1102 can be a counter-flow heat exchanger. For example, the heat exchange fluid of the cooling circuit 84 can flow in one direction while the fluid being heated (e.g., water in a water heating system) flows in an opposite direction through an internal coil in heat exchanger 1102.
The construction and arrangement of the systems and methods as shown in the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.). For example, the position of elements may be reversed or otherwise varied and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present disclosure.
The present disclosure contemplates methods, systems and program products on any machine-readable media for accomplishing various operations. The embodiments of the present disclosure may be implemented using existing computer processors, or by a special purpose computer processor for an appropriate system, incorporated for this or another purpose, or by a hardwired system. Embodiments within the scope of the present disclosure include program products comprising machine-readable media for carrying or having machine-executable instructions or data structures stored thereon. Such machine-readable media can be any available media that can be accessed by a general purpose or special purpose computer or other machine with a processor. By way of example, such machine-readable media can comprise RAM, ROM, EPROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code in the form of machine-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer or other machine with a processor. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or a combination of hardwired or wireless) to a machine, the machine properly views the connection as a machine-readable medium. Thus, any such connection is properly termed a machine-readable medium. Combinations of the above are also included within the scope of machine-readable media. Machine-executable instructions include, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing machines to perform a certain function or group of functions.
Although the figures show a specific order of method steps, the order of the steps may differ from what is depicted. Also two or more steps may be performed concurrently or with partial concurrence. Such variation will depend on the software and hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure. Likewise, software implementations could be accomplished with standard programming techniques with rule based logic and other logic to accomplish the various connection steps, processing steps, comparison steps and decision steps.
Numerous specific details are described to provide a thorough understanding of the disclosure. However, in certain instances, well-known or conventional details are not described in order to avoid obscuring the description. References to “some embodiments,” “one embodiment,” “an exemplary embodiment,” and/or “various embodiments” in the present disclosure can be, but not necessarily are, references to the same embodiment and such references mean at least one of the embodiments.
Alternative language and synonyms may be used for anyone or more of the terms discussed herein. No special significance should be placed upon whether or not a term is elaborated or discussed herein. Synonyms for certain terms are provided. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification including examples of any terms discussed herein is illustrative only, and is not intended to further limit the scope and meaning of the disclosure or of any exemplified term. Likewise, the disclosure is not limited to various embodiments given in this specification.
The elements and assemblies may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Further, elements shown as integrally formed may be constructed of multiple parts or elements.
As used herein, the word “exemplary” is used to mean serving as an example, instance or illustration. Any implementation or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other implementations or designs. Rather, use of the word exemplary is intended to present concepts in a concrete manner. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the preferred and other exemplary implementations without departing from the scope of the appended claims.
As used herein, the terms “approximately,” “about,” “substantially,” and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the invention as recited in the appended claims.
As used herein, the term “coupled” means the joining of two members directly or indirectly to one another. Such joining may be stationary in nature or moveable in nature and/or such joining may allow for the flow of fluids, electricity, electrical signals, or other types of signals or communication between the two members. Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another. Such joining may be permanent in nature or alternatively may be removable or releasable in nature.
The background section is intended to provide a background or context to the invention recited in the claims. The description in the background section may include concepts that could be pursued, but are not necessarily ones that have been previously conceived or pursued. Therefore, unless otherwise indicated herein, what is described in the background section is not prior art to the description and claims and is not admitted to be prior art by inclusion in the background section.
This application is a continuation-in-part application of and claims priority under 35 U.S.C. § 120 to U.S. application Ser. No. 17/847,375, filed on Jun. 23, 2022, which claims the benefit of and priority as a continuation of U.S. application Ser. No. 16/543,959, filed on Aug. 19, 2019, now U.S. Pat. No. 11,371,765, which claims the benefit of and priority as a continuation of U.S. patent application Ser. No. 16/178,883, filed Nov. 2, 2018, now U.S. Pat. No. 10,393,420, which claims priority as a continuation of U.S. patent application Ser. No. 14/996,062, filed Jan. 14, 2016, now U.S. Pat. No. 10,151,518, which claims priority to U.S. Provisional Patent Application No. 62/104,512, filed Jan. 16, 2015, the entire contents of each of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62104512 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16543959 | Aug 2019 | US |
Child | 17847375 | US | |
Parent | 16178883 | Nov 2018 | US |
Child | 16543959 | US | |
Parent | 14996062 | Jan 2016 | US |
Child | 16178883 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17847375 | Jun 2022 | US |
Child | 17957834 | US |