1. Field of the Invention
The present invention relates generally to a high efficiency refrigeration system and more specifically, to a refrigeration system utilizing a bypass path for subcooling, in combination with selection of the sizes of the condenser, compressor and evaporator, to achieve increased overall system efficiency.
2. Relevant Art
The main steps in the refrigeration cycle are compression of the refrigerant by compressor 12, heat extraction from the refrigerant to the environment by condenser 14, throttling of the refrigerant in the expansion device 16, and heat absorption by the refrigerant from the space being cooled in evaporator 18. This process, sometimes referred to as a vapor-compression refrigeration cycle, is used in air-conditioning systems, which cool and dehumidify air in residential, commercial and industrial environments, in a moving vehicle (e.g., automobile, airplane, train, etc.), in refrigeration equipment, in heat pumps and in other applications.
In the condenser 14, heat is removed from the refrigerant so that the superheated refrigerant vapor from the compressor 12 becomes liquid refrigerant by the time it reaches the exit of the condenser. In
As is known, the required cooling capacity dictates the size of the evaporator, and this dictates the compressor capacity. While a larger compressor gives better cooling performance, cost and energy consumption must also be taken into account. Moreover, since the heat removal capacity of the condenser must equal the heat input due to the operation of the evaporator and the compressor, increasing the size of the compressor for a given cooling capacity means the condenser must be larger and more costly.
Thus, a compromise is necessary, and according to conventional practice, in a a so-called optimized or balanced system, there is an accepted relationship between system cooling capacity (evaporator size) and compressor capacity. For example, in a conventional 1 ton system, the evaporator is designed to remove 12 KBTU/Hr. and the matched compressor size is 4 KBTU/Hr. The condenser must therefore be sized to handle 16 KBTU/Hr.
Much effort has been directed find ways to improve the efficiency, size and cost of refrigeration systems. Because of the inefficiency of heat transfer during subcooling, this aspect of the refrigeration cycle has received considerable attention, but up to now, no suitably cost effective technique has been found to reduce the size of the subcooling section in the condenser or to eliminate it altogether.
For example, it has been proposed to divert a portion of the high-pressure refrigerant exiting the condenser to expand through a secondary expansion device into a bypass circuit, and to employ the resulting cold refrigerant in a heat exchanger to subcool the main stream of the high-pressure refrigerant. The pressure at the bypass circuit is maintained to be the same as the pressure at the evaporator. Such an arrangement is shown in Kita et al. U.S. Pat. No. 6,164,086.
Kita et al. also propose an arrangement in which all the refrigerant is diverted to the bypass path, and when the refrigerant flows through the bypass, the main expansion valve in the main refrigeration path is shut off. The purpose of diverting the refrigerant to the bypass line is to produce ice in a heat storage container so that the ice can be used for subcooling the refrigerant. (Kita et al. use the term “supercooling” for the subcooling process.) To meet the normal subcooling operational requirements in Kita et al., the bypass line is shut off, and the main expansion valve is opened. Then, all of the refrigerant flows through the container filled with ice, and as the ice removes heat from the refrigerant, the refrigerant is subcooled. The subcooled refrigerant then flows to through the main expansion device and eventually to the evaporator.
Kita et al., however, appear to suggest that their bypass methods are beneficial only for mixed (nonazetropic) refrigerant systems such as R-32/134a or R-407c due to the temperature gradient in the dual-phase region. For a single refrigerant (azeotripic) system such as R-22 or R-134a, the bypass method does not produce a temperature reduction at the inlet of the evaporator.
Kim and Domanski, in Intracycle Evaporative Cooling in a Vapor Compression Cycle (NISTIR 5873), also investigated the first of the bypass methods described above, which they referred to as their “Method 2”. In addition, they also considered another method, referred to by them as “Method 1”, which is similar to a conventional liquid-line/suction line heat exchange where superheated vapor is used to subcool the high-pressure liquid, but which uses a liquid-vapor mixture from the evaporator instead of superheated vapor. This is shown schematically in
In neither instance, did they find beneficial results for a single refrigerant system, but with their first method, they did find some improvement for nonazetropic refrigerants. For their second method (the first method of the Kita et al. patent), however, they found no improvement with mixed or single refrigerant systems.
Moreover, the reported improvements with mixed refrigerants are small, and in any case, are of limited current practical interest because mixed refrigerants are not in commercial use, and can not be used in current systems because they require higher pressure capability than systems using single refrigerants.
An approach similar to the second method taught by Kita et al. appears to have been used in very large systems (e.g., 2,000 tons) but is of questionable use in small and intermediate size systems (less than about 1,000 tons).
Cho and Bai, in U.S. Pat. No. 6,449,964, demonstrate a method and use of mixed refrigerant systems with higher bypass circuit pressure. They have also shown the use of a pressure differential accommodating device to mix the two vapors at two different pressures.
Therefore, a need clearly still exists for a cost-effective way to achieve the subcooling without having a large subcooling section in the condenser, especially using current single refrigerants, and in systems having both small and large cooling capacities. The present invention seeks to meet this need.
According to the present invention, it has been found that significant improvements can be obtained using a bypass circuit for subcooling in a system in which the conventional balanced or optimized relationship between the evaporator, compressor and condenser is abandoned, and in which a condenser is used which would not provide sufficient heat removal capacity according to normal practice. In other words, in an optimized system, the required capacity determines the evaporator size which then dictates the compressor size, and the heat input of these together dictate the condenser size. In contrast, according to the present invention, after the evaporator size has been determined, the condenser size is “de-optimized” by reducing or eliminating the subcooling capacity, and providing the lost subcooling through use of a heat exchanger driven by refrigerant diverted into a bypass circuit, e.g., from the main expansion valve. This allows use of smaller compressor, with consequent improved EER and system cost. The smaller condenser also reduces space requirements for the system.
This surprising ability to achieve improved performance beyond that thought possible using bypass technology comes about because in a balanced system, the condenser is already large enough, and the system cannot utilize the additional subcooling. However, in a refrigeration system like the present invention where the condenser is substantially smaller than the optimum-sized condenser, the bypass method is able to show significant benefit as the increased subcooling makes the small condenser behave like an optimum-sized condenser or an oversized condenser. This increases both the cooling capacity and EER significantly.
Similarly, the invention allows the evaporator to be made substantially larger than the optimum-sized evaporator, and the heat absorption is increased accordingly. Then, the bypass method is able to demonstrate significant benefit as the increased subcooling makes the proportionally smaller condenser behave like an optimum-sized condenser or an oversized condenser. In such an embodiment of the present invention, the condenser pressure is maintained constant despite the increased heat absorption at the evaporator, thus increasing both the cooling capacity and EER without increasing compressor work.
Broadly stated, according to this invention, a portion of the liquid refrigerant exiting the condenser is diverted into a bypass line from which it is re-injected into the primary refrigerant path at a location between the evaporator outlet and compressor inlet. In the bypass line, a secondary expansion valve is used to throttle the liquid refrigerant that was diverted from the condenser, thus decreasing its temperature substantially below the condenser outlet temperature.
The cooled refrigerant exiting the secondary expansion valve then passes through the heat exchanger which is thermally coupled to the primary refrigerant line between the condenser outlet and the primary expansion device inlet. The heat exchanger removes heat from the refrigerant vapor exiting the condenser, thus reducing its temperature. As a result, the refrigerant enters the primary expansion device at a substantially lower temperature than its saturation temperature. In other words, the level of subcooling is increased significantly, by 10-15 degree Celsius for example. Moreover this is achieved without devoting any portion of the condenser to subcooling.
Because the refrigerant pressure in the bypass line at the outlet of the heat exchanger is greater than the pressure at the evaporator outlet, a pressure differential accommodating device is used at the intersection of bypass line outlet and the primary refrigerant line. A pressure differential accommodating device can be either a vacuum generating device or a pressure reducing device.
According to a first aspect of the invention, there is provided a refrigeration system including refrigerant compressing means, refrigerant condensing means, expansion means and evaporation means connected together to form a closed-loop system with a refrigerant circulating therein, and a bypass line attached between the outlet of the condensing means and the inlet of the expansion means, the bypass line including a secondary expansion means, heat exchanging means to remove heat from the discharge liquid refrigerant from the condenser between the outlet of the condensing means and an inlet of the expansion means, and a pressure differential accommodating means for mixing two vapors at different pressures connecting the outlets of the evaporation means and the heat exchanging means to an inlet of the compressing means.
According to a second aspect of the invention, there is provided a refrigeration system comprised of a primary refrigerant path including a compressor, a condenser, a primary expansion device, and an evaporator connected together to form a closed loop system with a refrigerant circulating therein, and a bypass line attached between the outlet of the condenser and the inlet of the compressor, the bypass line including a heat exchanger thermally coupled to the primary refrigerant path between the condenser outlet and the primary expansion device inlet to remove heat from the discharge vapor from the compressor, and a pressure differential accommodating device for mixing two vapors at two different pressures connecting the outlets of the evaporator and the heat exchanger to an inlet of the compressor.
Further according to the second aspect of the invention, the pressure differential accommodating device may be a vacuum generating device with no moving parts such as a venturi tube, or a so-called “vortex tube” which is conventionally used to create two fluid steams of differing temperature from a single high pressure input stream.
Also according to the second aspect of the invention, the pressure differential accommodating device may be a pressure reducing device with no moving parts such as a capillary tube, a restricted orifice, a valve, or a porous plug. The pressure reducing device is used in the bypass line which is maintained at a higher pressure than the evaporator. The pressure reducing device equalizes the pressure between the bypass line and the evaporator outlet, and includes suitable tubing connections to permit mixing of the pressure-equalized vapors before return to the compressor inlet.
According to a third aspect of the invention, there is provided a method of increasing the efficiency of a refrigeration system comprised of a primary refrigerant path including a compressor, a condenser, a primary expansion device, and an evaporator connected together to form a closed loop system with a refrigerant circulating therein, the method comprising the steps of bypassing a portion of the refrigerant exiting the condenser into a secondary refrigerant line, passing the bypassed refrigerant through a heat exchanger thermally coupled to the primary refrigerant path between the condenser outlet and the primary expansion device inlet to remove heat from the discharge liquid refrigerant from the condenser, and passing the refrigerant exiting the heat exchanger and the refrigerant exiting the evaporator through a pressure differential accommodating device that mixes two vapors at different pressures and feeding the refrigerant exiting the pressure differential accommodating device to an inlet of the compressor.
Providing a bypass path for performing subcooling makes the condenser more efficient, thereby reducing the condenser pressure, a phenomenon which decreases the pressure lift at compressor, and thus reduces the compressor work. Correspondingly, because subcooling does not have to be done inside the condenser, the condenser can be substantially smaller and becomes materially more efficient and cost-effective. The increased subcooling increases the amount of liquid refrigerant after the throttling process through the primary expansion valve. Thus, the heat absorption at the evaporator (often referred as the cooling capacity) increases.
The above-described benefits of the subcooling bypass are achieved with diversion of 5-15% of the liquid refrigerant outflow from the condenser. At this level, reduced compressor work and increased cooling capacity are achieved. Since the EER (energy efficiency ratio) is defined as the ratio of the cooling capacity to compressor work, this increases the EER.
According to a fourth aspect of the invention, when more than 15%, for example, 30%, of the liquid refrigerant from the condenser is diverted to the bypass path, the cooling capacity is reduced due to the substantial decrease in the refrigerant mass flow rate circulating through the evaporator. By use of an adjustable valve in the bypass path, the bypass mass flow rate, and thus, the cooling capacity, can be varied according to the thermal load, whereby it is possible to operate an air conditioning or refrigeration system without frequent, highly energy-inefficient, ON-OFF operations of the compressor. This results in an improved long-term seasonal energy efficiency ratio (SEER).
According to a fifth aspect of the invention, multiple evaporators can be employed, e.g., in a zoned cooling system. Thus, several small evaporators could be provided for separate rooms, with one condenser and one compressor. When all the rooms require cooling, the system can be operated with a 5% bypass rate to provide the maximum cooling capacity and the maximum efficiency. If the thermal load decreases, as when fewer rooms need to be cooled, the bypass rate can be increased to reduce the cooling capacity without the need to cycle the compressor on and off. This is quite beneficial because the repeated ON-OFF cycling of the compressor is a very energy-inefficient process.
In further contrast to conventional techniques, the concepts of this invention are applicable to conventional single-refrigerant systems, and also to mixed-refrigerant systems using a combination of refrigerants selected to provide the desired combination of thermal and flammability characteristics. Such mixed-refrigerant systems may also include regenerative features which provide higher evaporator efficiency by increasing the percentage of liquid in the refrigerant as it enters the evaporator. Regenerative mixed refrigerant systems are disclosed, for example, in U.S. Pat. Nos. 6,250,086 and 6,293,108, the contents of which are hereby incorporated by reference.
According to a further aspect of the invention, even further reduction of condenser size can be achieved by employing the bypass circuit for de-superheating, as well as for subcooling. Use of de-superheating bypass is disclosed in my pending U.S. patent application Ser. No. 10/253,000, filed Sep. 23, 2002 (Atty Docket 3474-21), the contents of which are hereby incorporated by reference.
It is accordingly an object of this invention to provide an apparatus and method that eliminates the subcooling section in the condenser of a refrigeration system.
It is also an object of the invention to increase the efficiency of known refrigeration systems by providing a more cost-effective way of providing subcooling of the refrigerant in a refrigeration system.
It is another object of the invention to increase the cooling capacity and EER of known refrigeration systems by providing a cost-effective way of providing subcooling of the refrigerant.
A further object of the invention is to provide a system in increased cooling capacity and EER are achieved by use of bypass subcooling technology in combination with de-optimizing the size of the condenser used according to conventional practice for a given cooling capacity.
A related object of the invention to allow use of smaller condensers in known refrigeration systems by providing a cost-effective way of providing subcooling of the refrigerant.
It is another object of the invention to enable the use, without a degradation of EER or cooling capacity, of a condenser and a compressor of smaller sizes than the current optimum sizes and size ratios of components of known refrigeration systems without bypass subcooling technology.
An additional object of the invention is to provide a method and apparatus for subcooling of the refrigerant, which may be used in single-refrigerant systems and also in mixed-refrigerant systems, with and without regenerative features.
An additional object of the invention is to provide an improved refrigeration system with substantially lower evaporator pressure by use of a vacuum-generating device thereby boosting the evaporator capacity.
An additional object of the invention is to provide an improved refrigeration system in which the mixing of refrigerant streams having two different pressures using a vacuum generating device increases the suction pressure of the compressor, whereby the required pressure rise over the compressor is reduced, and which, in turn, reduces the compressor work and increases the EER.
An additional object of the invention is to provide an improved refrigeration system in which the mixing of two different pressure vapors is carried out using a vacuum generating device so that the pressure at the bypass line can be maintained at a higher pressure than the evaporator pressure.
An additional object of the invention is to provide an improved refrigeration system in which the mixing of two different pressure vapors is carried out using a pressure-reducing device so that the pressure at the bypass line can be maintained at a higher pressure than the evaporator pressure.
Yet another object of the invention is to provide an improved refrigeration system in which subcooling is performed outside the condenser in a bypass path to which refrigerant from the condenser outlet is diverted, into a bypass path, and in which the quantity of refrigerant diverted is controlled such that the cooling capacity can be adjusted to meet varying thermal requirements, whereby the system can be operated without the need for energy-inefficient repeated on and off cycling of the compressor.
An additional object of the invention is to provide a method and apparatus for improving the cooling capacity and EER of a conventional refrigeration system by employing bypass technology in combination with de-optimizing condenser size both for subcooling and for de-superheating.
Throughout the drawings, like parts are given the same reference numerals.
In the implementations illustrated in
Without the bypass, the increased heat absorption resulting from use of a larger evaporator also increases the condenser pressure, thus increasing compressor work. Often the increase in the compressor work is greater than the increase in the heat absorption thereby decreasing the energy efficiency ratio (EER). However, in the present invention, the bypass technology creates enough subcooling at and after the condenser 24 so that the increased heat absorption at the evaporator 28 does not increase the condenser pressure, because the bypass enables the condenser 24 to behave as if it were oversized. Hence, the EER increases in the case with the bypass.
The construction of a vortex generator is shown schematically in
As illustrated in
With reference to the system shown in
Other devices which rely on geometry and fluid dynamics may also be used to generate a vacuum which permits mixing the refrigerant streams exiting from evaporator 18 and heat exchanger 22. For example, a device operating on the principle of a venturi tube may also be used.
Referring again to
More particularly, providing a bypass path for subcooling makes the condenser 24 more efficient thereby reducing the condenser pressure, which, in turn, decreases the pressure lift at the compressor 12, thus reducing the compressor work. The coefficient of performance (“COP”) of a refrigeration system, sometimes termed the energy-efficiency ratio (EER), is defined as Qv/Wc, where Qv is the heat absorption by the evaporator of the system and Wc is the work done by the compressor. As will be appreciated, a decrease in Wc increases the COP and the EER.
Correspondingly, because subcooling does not have to be done inside condenser 24, the condenser becomes more efficient, and subcooling prior to the main expansion device 16 is increased. This increases the amount of liquid refrigerant after the throttling process through the main expansion valve 16. Thus, the heat absorption at evaporator 28 (often referred as the cooling capacity) increases.
Referring still to
Of even more significance, after the mixing of the two vapor streams from heat exchanger 22 and evaporator 28, the pressure of the combined stream can have a higher pressure than the evaporator inlet pressure. This means that the suction pressure at the compressor inlet is increased, which reduces the required pressure lift across the compressor 12. The reduced compressor work can provide a beneficial increase in the EER.
The outlets of evaporator units 98a and 98b are at the same pressure, and are therefore connected in common to the input of pressure differential accommodating device 38.
In operation, when cooling in both zones is required, valves 100a and 100b are opened, and refrigerant flows through both evaporators 98a and 98b. Valve 94 is adjusted to divert between 10 and 60 percent of the refrigerant from condenser 24 into bypass path 92 to achieve maximum cooling and efficiency. Thus, all of the benefits of the subcooling bypass described in connection with
As an additional feature of system 110, however, if cooling is required, e.g., only in the zone served by evaporator unit 98a, valve 100a is opened, valve 100b is closed, and valve 94 is adjusted to divert the refrigerant which would otherwise flow through evaporator 98b into bypass path 92, along with the refrigerant required for subcooling.
To vary the bypass mass flow rate, valve 94 in bypass path 92 should be continuously adjustable or adjustable in steps, to provide the desired number of different flow rates. For example, 5% to 15% diversion could be provided for maximum performance, with 20%, 30%, 40%, 50%, and 60% diversion for reduced cooling capacity. Valves providing the above-described capability are commercially available, and any suitable or desired valve of this type may be employed.
As previously indicated, maximum efficiency and cooling capacity are achieved by diversion of 5-15% of the refrigerant mass flow to bypass path 92. As the amount of refrigerant diverted is increased beyond 15%, for example, up to 30% or more, the cooling capacity is reduced due to the substantial decrease in the refrigerant mass flow rate circulating through evaporator 96. Thus, by diverting the refrigerant not needed in the idle evaporator, the cooling capacity can be made to vary according to the thermal load, without the need for repeated on-off cycling of the compressor or resort to costly variable speed compressors.
This is particularly advantageous in that cycling the compressor on and off consumes a large quantity of energy. Eliminating this inefficiency results in significantly improved long-term energy efficiency, a parameter sometimes measured in terms of seasonal energy-efficiency ratio (SEER), which takes account of the ON/OFF operation of the compressor on the efficiency of the system. SEER is defined as the ratio of the sum of Qv (heat absorbed by the evaporator) times the hours of operation on one hand, to the sum of Wc (compressor work) times the hours of operation on the other.
As will also be appreciated, a variable cooling capacity can be provided in single-zone systems such as illustrated in
In the constructions described above, it has been assumed that a single refrigerant circulates through the system. Subcooling bypass can also be used in conjunction with mixed refrigerants in regenerative systems to achieve highly beneficial results.
The system, generally denoted at 120, comprises of a compressor 12, an expansion device 16a, an evaporator 28, a heat exchanger 22, and a pressure differential accommodating device 38 in a bypass path 27 just as in system 50 (see
The LV separator 108 separates the incoming vapor stream exiting from condenser stage 24a into a first vapor component which passes to the inlet of condenser stage 24b, and a second lower temperature liquid component a portion of which passes into the bypass path 27 through a valve 112 to the inlet of heat exchanger 22.
The second component exiting from LV separator 108 through the valve 112 is rich in R-134a refrigerant due to its high condensation and boiling point relative to the other refrigerant components. Aside from the advantages of performing the desuperheating step outside condenser stage 24a as described above, the R-134a-rich composition of the refrigerant allocated to the bypass path in liquid form has the added benefit of reducing the condenser pressure.
As indicated above, the system illustrated in
In describing the invention, specific terminology has been employed for the sake of clarity. However, the invention is not intended to be limited to the specific descriptive terms, and it is to be understood that each specific term includes all technical equivalents that operate in a similar manner to accomplish a similar purpose.
Similarly, the embodiments described and illustrated are also intended to be exemplary, and various changes and modifications, and other embodiments within the scope of the invention will be apparent to those skilled in the art in light of the disclosure. The scope of the invention is therefore intended to be defined and limited only by the appended claims, and not by the description herein.
This application claims priority to U.S. Provisional Application Ser. No. 60/426,073, filed Nov. 11, 2002.
| Filing Document | Filing Date | Country | Kind | 371c Date |
|---|---|---|---|---|
| PCT/US03/36424 | 11/12/2003 | WO | 3/20/2006 |
| Number | Date | Country | |
|---|---|---|---|
| 60426073 | Nov 2002 | US |