This application is a National Stage application of International Patent Application No. PCT/CN2016/094606, filed on Aug. 11, 2016, which claims priority to Chinese Patent Application No. 201510761650.2, filed on Nov. 10, 2015, each of which is hereby incorporated by reference in its entirety.
An embodiment of the present invention relates to a refrigeration system.
In an existing refrigeration system, heat exchange tubes of an evaporator and a condenser are generally hollow round tubes or flat tubes. A fluid in a single state flows through the same heat exchange tube, and although multiple heat exchange tubes can form and include multiple channels and thereby form different flow paths, there is an equivalent parallel-connection relationship among the multiple flow path channels, and the states of fluids entering the channels are substantially the same. Merely serving as the same flow path.
An object of an embodiment of the present invention is to provide a refrigeration system, whereby a system structure can for example be simplified.
An embodiment of the present invention provides a refrigeration system, comprising: an evaporator and a condenser connected by a pipeline, wherein: at least one of the evaporator and the condenser comprises a heat exchange tube, the heat exchange tube comprising a first channel and a second channel, and the first channel and the second channel of the heat exchange tube forming different flow paths of the refrigeration system.
According to an embodiment of the present invention, the refrigeration system further comprises: a compressor and an expansion valve, wherein: the evaporator comprises the heat exchange tube, the first channel of the heat exchange tube has a first port and a second port, the second channel of the heat exchange tube has a first port and a second port, and the condenser has a first port and a second port; the first port of the first channel of the heat exchange tube is connected to the second port of the condenser, the expansion valve is connected between the second port of the first channel of the heat exchange tube and the first port of the second channel of the heat exchange tube, and the second port of the second channel of the heat exchange tube is connected to an inlet of the compressor.
According to an embodiment of the present invention, the first port of the condenser is connected to an outlet of the compressor.
According to an embodiment of the present invention, the first port of the first channel of the heat exchange tube and the second port of the second channel of the heat exchange tube are located at the same end of the heat exchange tube.
According to an embodiment of the present invention, the refrigeration system further comprises: a compressor, wherein: the condenser comprises the heat exchange tube, the first channel of the heat exchange tube has a first port and a second port, and the second channel of the heat exchange tube has a first port and a second port; the first port of the first channel of the heat exchange tube is closed, and the second port of the first channel of the heat exchange tube is in communication with the second port of the second channel of the heat exchange tube, and the first port of the second channel of the heat exchange tube is connected to an outlet of the compressor.
According to an embodiment of the present invention, the refrigeration system further comprises: an expansion valve, wherein: the second port of the second channel of the heat exchange tube is connected to the expansion valve.
According to an embodiment of the present invention, the first port of the first channel of the heat exchange tube and the first port of the second channel of the heat exchange tube are located at the same end of the heat exchange tube.
According to an embodiment of the present invention, the refrigeration system further comprises: a compressor, wherein: the evaporator comprises the heat exchange tube, the first channel of the heat exchange tube has a first port and a second port, and the second channel of the heat exchange tube has a first port and a second port; the refrigeration system further comprises a gas-liquid separator, the gas-liquid separator having a first port for inflowing refrigerant, a second port for outflowing gaseous refrigerant, and a third port for outflowing liquid refrigerant; the second port of the gas-liquid separator is connected to the first port of the first channel of the heat exchange tube, and the third port of the gas-liquid separator is connected to the first port of the second channel of the heat exchange tube, and the second port of the first channel and the second port of the second channel of the heat exchange tube are connected to an inlet of the compressor.
According to an embodiment of the present invention, the refrigeration system further comprises: a bypass tube connecting the first port and the second port of the first channel of the heat exchange tube.
According to an embodiment of the present invention, the refrigeration system further comprises: a control valve disposed on the bypass tube, for controlling a flow rate of gaseous refrigerant passing through the bypass tube.
According to an embodiment of the present invention, the refrigeration system further comprises: an expansion valve, wherein: the first port of the gas-liquid separator is connected to an outlet of the expansion valve.
According to an embodiment of the present invention, the first port of the first channel of the heat exchange tube and the first port of the second channel of the heat exchange tube are located at the same end of the heat exchange tube.
According to an embodiment of the present invention, the first channel and the second channel are disposed side by side.
According to an embodiment of the present invention, the first channel is a central channel, and the second channel is a peripheral channel surrounding the central channel.
According to an embodiment of the present invention, the first channel is a central channel, and the second channel is multiple peripheral channels surrounding the central channel.
By using the refrigeration system according to an embodiment of the present invention, it is possible for example to simplify the system structure, reduce system costs, and increase system efficiency.
The present invention is described in further detail below with reference to the accompanying drawings and embodiments. The embodiments below are intended to explain the present invention, but not to restrict the scope thereof.
As shown in
As shown in
As shown in
According to an embodiment of the present invention, the central channel 321 may be used as a subcooler, and refrigerant from the condenser may flow through the central channel 321.
As shown in
According to an embodiment of the present invention, the central channel 321 may be used as a refrigerant storage device, and refrigerant from the condenser may flow through the central channel 321.
As shown in
According to an embodiment of the present invention, by using the gas-liquid separator 5 to separate vapour and liquid phases of refrigerant, uniform distribution of refrigerant flowing through the heat exchange tube can be achieved more effectively, thereby increasing heat exchanger efficiency. The entry of liquid refrigerant into the compressor can be avoided. In addition, the use of the control valve enables the amounts of gaseous refrigerant bypassing and flowing through the heat exchanger to be controlled, to reduce a refrigerant pressure drop of gaseous refrigerant caused by passage through the heat exchanger to within an acceptable range.
In the case of a conventional air conditioning system, in order to increase system efficiency, avoid liquid being carried in gas drawn by the compressor and at the same time increase supercooling, it is necessary to provide an additional indraft pipeline heat exchanger suction regenerator. In the system according to an embodiment of the present invention, by guiding liquid refrigerant to flow into the central channel, and guiding gaseous and liquid phases of refrigerant to flow into the peripheral channel, the objectives of suction regeneration and liquid refrigerant supercooling are achieved, and an indraft pipeline heat exchange gas regenerator can be omitted.
In the case of a refrigeration system having heating and cooling modes, an apparatus for accommodating excess refrigerant must be provided, because the two modes require different amounts of refrigerant. In the system according to an embodiment of the present invention, excess refrigerant can be stored in the central channel of the condenser. Therefore, it is not necessary to provide an apparatus for accommodating excess refrigerant.
Thus, the refrigeration system according to the present invention is compact in structure, has high efficiency, requires a small amount of refrigerant, and has low costs.
In the refrigeration system according to the present invention, at least one of the evaporator 3 and the condenser 2 comprises the heat exchange tube 32, so at least one of the evaporator 3 and the condenser 2 can form two refrigerant loops or refrigerant flow paths.
Although the heat exchange tube 32 comprises the central channel 321 and the multiple peripheral channels 322 surrounding the central channel 321 in the embodiments above, the heat exchange tube 32 may also comprise arbitrary first and second channels, e.g. one or more first channel(s) and second channel(s); the first channel and second channel may be disposed side by side. In the case of the embodiments above, the first channel is the central channel, and the second channel is the multiple peripheral channels surrounding the central channel. In addition, the peripheral channel may also be one channel.
The embodiments above are merely intended to explain the present invention, without limiting it. Those skilled in the art could make various changes and alterations in form without departing from the spirit and scope of the present invention. Thus, all equivalent technical solutions also fall within the scope of the present invention, and the scope of patent protection of the present invention shall be defined by the claims.
While the present disclosure has been illustrated and described with respect to a particular embodiment thereof, it should be appreciated by those of ordinary skill in the art that various modifications to this disclosure may be made without departing from the spirit and scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2015 1 0761650 | Nov 2015 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2016/094606 | 8/11/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/080268 | 5/18/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4190105 | Dankowski | Feb 1980 | A |
8763424 | Albertson | Jul 2014 | B1 |
20060288721 | Tsuboi | Dec 2006 | A1 |
20070169508 | Ichiyanagi | Jul 2007 | A1 |
20080041092 | Gorbounov | Feb 2008 | A1 |
20120192589 | Omer | Aug 2012 | A1 |
20140260364 | Litch | Sep 2014 | A1 |
20160290730 | Taras | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
202361527 | Aug 2012 | CN |
103528284 | Jan 2014 | CN |
103743156 | Apr 2014 | CN |
4671985 | Apr 2011 | JP |
2014132217 | Jul 2014 | JP |
2014194313 | Oct 2015 | JP |
200408008 | Feb 2006 | KR |
20120111634 | Oct 2012 | KR |
2012046947 | Apr 2012 | WO |
2013140992 | Sep 2013 | WO |
Entry |
---|
Supplementary European Search Report for U.S. Appl. No. 16/863,446 dated Jul. 2, 2019. |
International Search Report for PCT Serial No. PCT/CN2016/094606 dated Aug. 11, 2016. |
Number | Date | Country | |
---|---|---|---|
20180313588 A1 | Nov 2018 | US |