The present disclosure relates to the field of a refrigerator technique, particularly relates to a control method for a refrigerator, a control apparatus of a refrigerator, a refrigerator and an electronic device.
At present, for a refrigerator with an ice making function, a refrigerant is generally controlled to flow through a refrigerating circuit or a freezing circuit to refrigerate a freezing compartment or a refrigerating compartment, after a defrosting program is performed. The refrigerant is controlled to flow into an ice making circuit after refrigerating the freezing compartment or the refrigerating compartment.
However, during the defrosting period for a refrigerator, the temperature of the ice making compartment will rise. If after the defrosting, the refrigerant is flowed into a non-ice making circuit first, the ice making compartment will be in the temperature-rising state caused by the defrosting process for a longer duration; and thus there is an increasing risk that ice cubes may melt. Moreover, re-freezing of the melted ice cubes may cause the ice cubes to adhere together. The adhering of the ice cubes may become severe after several defrosting processes. As a result, ice maker cannot produce ice smoothly and thus fails to work normally. Further, when the ice making compartment is kept at a high-temperature state for a longer period of time, the long-term storage of the ice cubes is adversely affected.
The present disclosure aims to solve at least one of the technical problems in the related art to a certain degree. For this, the present disclosure provides in embodiments a control method for a refrigerator. The method can control a refrigerant to be flowed into an ice making circuit preferentially after defrosting for a refrigerator, thereby effectively decreasing the time of an ice making compartment being in a high-temperature state caused by the defrosting, and reducing risks where ice tubes melt and melted ice cubes are adhered together resulted from re-freezing of the melted ice cubes. As a result, a long-term and high-quality storage of the ice cubes can be achieved.
The present disclosure further provides in embodiments a control apparatus of a refrigerator.
The present disclosure further provides in embodiments a refrigerator.
The present disclosure further provides in embodiments an electronic device.
The present disclosure further provides in embodiments a non-temporary computer-readable storage medium.
In a first aspect, the present disclosure provides in embodiments a method for controlling a refrigerator, including: detecting and confirming that the refrigerator is in the first control period after defrosting; detecting and confirming that an ice making evaporator requests refrigeration; and controlling a control valve to connect to an ice making circuit.
According to embodiments in the present disclosure, when the refrigerator is in the first control period after defrosting, if the ice making evaporator requests refrigeration, the method for controlling a refrigerator controls the control valve to connect to the ice making circuit, such that the refrigerant can be controlled to flow into the ice making circuit preferentially after defrosting for the refrigerator, thereby effectively decreasing the time of the ice making compartment being in the high-temperature state caused by the defrosting, reducing the risk where ice tubes melt and melted ice cubes are adhered together resulted from re-freezing of the melted ice cubes. As a result, a long-term and high-quality storage of the ice cubes can be achieved.
In addition, the method for controlling a refrigerator according to the above embodiments of the present disclosure may further include the following additional technical features.
According to some embodiments of the present disclosure, after said detecting and confirming that the refrigerator is in the first control period after defrosting, the method further includes detecting and confirming that the ice making evaporator does not request refrigeration and a system evaporator requests refrigeration, and controlling the control valve to connect to a refrigerating circuit.
According to some embodiments of the present disclosure, the method for controlling a refrigerator as described above further includes detecting and confirming that the refrigerator is in a non-first control period after defrosting; detecting and confirming that the ice making evaporator requests refrigeration and the system evaporator requests refrigeration; controlling the control valve to connect to the refrigerating circuit, when the ice making circuit is connected to the refrigerating circuit in series and parallel; controlling the control valve to connect to the refrigerating circuit and the ice making circuit respectively, when the ice making circuit is connected to the refrigerating circuit in parallel only.
According to some embodiments of the present disclosure, after said detecting and confirming that the refrigerator is in a non-first control period after defrosting, the method further includes detecting and confirming that the ice making evaporator requests refrigeration and the system evaporator does not request refrigeration, and controlling the control valve to connect to the ice making circuit.
According to some embodiments of the present disclosure, after said detecting and confirming that the refrigerator is in a non-first control period after defrosting, the method further includes detecting and confirming that the ice making evaporator does not request refrigeration and the system evaporator requests refrigeration, and controlling the control valve to connect to the refrigerating circuit.
According to some embodiments of the present disclosure, after said detecting and confirming that the refrigerator is in a non-first control period after defrosting, the method further includes detecting and confirming that the ice making evaporator does not request refrigeration and the system evaporator does not request refrigeration, and controlling the control valve to remain at the current direction.
In a second aspect, the present disclosure provides in embodiments a control apparatus of a refrigerator, including: a first detecting module, configured to detect and confirm that the refrigerator is in the first control period after defrosting; and a first controlling module, configured to detect and confirm that an ice making evaporator requests refrigeration, and to control a control valve to connect to an ice making circuit.
According to the control apparatus of a refrigerator in embodiments of the present disclosure, the first detecting module detects and confirms that the refrigerator is in the first control period after defrosting, and the first controlling module detects and confirms that an ice making evaporator requests refrigeration, and controls a control valve to connect to an ice making circuit, such that the refrigerant can be controlled to flow into the ice making circuit preferentially after defrosting for the refrigerator, thereby effectively decreasing the time of the ice making compartment being in the high-temperature state caused by the defrosting, reducing the risk where ice tubes melt and melted ice cubes are adhered together resulted from re-freezing of the melted ice cubes. As a result, a long-term and high-quality storage of the ice cubes can be achieved.
In addition, the control apparatus of a refrigerator according to the above embodiments of the present disclosure may further include the following additional technical features.
According to some embodiments of the present disclosure, the first controlling module is further configured to: detect and confirm that the ice making evaporator does not request refrigeration and a system evaporator requests refrigeration, and control the control valve to connect to a refrigerating circuit; detect and confirm that the ice making evaporator does not request refrigeration and the system evaporator does not request refrigeration, and control the control valve to remain at the current direction.
According to some embodiments of the present disclosure, the above control apparatus further includes a second detecting module, configured to detect and confirm that the refrigerator is in a non-first control period after defrosting; and a second controlling module, configured to: detect and confirm that the ice making evaporator requests refrigeration and the system evaporator requests refrigeration; control the control valve to connect to the refrigerating circuit, when the ice making circuit is connected to the refrigerating circuit in series and parallel; control the control valve to connect to the refrigerating circuit and the ice making circuit respectively, when the ice making circuit is connected to the refrigerating circuit in parallel only; detect and confirm that the ice making evaporator requests refrigeration and the system evaporator does not request refrigeration, and control the control valve to connect to the ice making circuit; detect and confirm that the ice making evaporator does not request refrigeration and the system evaporator requests refrigeration, and control the control valve to connect to the refrigerating circuit; detect and confirm that the ice making evaporator does not request refrigeration and the system evaporator does not request refrigeration, and control the control valve to remain at the current direction.
In a third aspect, the present disclosure provides in embodiments a refrigerator, including a control apparatus as described in the second aspect of embodiments of the present disclosure.
According to embodiments of the present disclosure, the refrigerator can control the refrigerant using the above control apparatus so that the refrigerant can flow into the ice making circuit preferentially after defrosting for the refrigerator, thereby effectively decreasing the time of the ice making compartment being in the high-temperature state caused by the defrosting, reducing the risk where ice tubes melt and melted ice cubes are adhered together resulted from re-freezing of the melted ice cubes. As a result, a long-term and high-quality storage of the ice cubes can be achieved.
In a fourth aspect, the present disclosure provides in embodiments an electronic device, including: a memory, a processor, and a computer program stored in the memory and executable by the processor, wherein the processor, when executing the program, achieves a control method for a refrigerator as described in the first aspect of embodiments of the present disclosure.
According to embodiments of the present disclosure, when the processor executes the computer program stored in the memory, and when a refrigerator is in the first control period after defrosting, the electronic device controls a control valve to connect to an ice making circuit, if an ice making evaporator requests refrigeration, such that the refrigerant can be controlled to flow into the ice making circuit preferentially after defrosting for the refrigerator, thereby effectively decreasing the time of the ice making compartment being in the high-temperature state caused by the defrosting, reducing the risk where ice tubes melt and melted ice cubes are adhered together resulted from re-freezing of the melted ice cubes. As a result, a long-term and high-quality storage of the ice cubes can be achieved.
In a fifth aspect, the present disclosure provides in embodiments a non-temporary computer-readable storage medium having stored therein a computer program that, when executed by a processor, achieves a control method for a refrigerator as described in the first aspect of embodiments of the present disclosure.
According to embodiments in the present disclosure, when the processor executes the computer program stored in the non-temporary computer-readable storage medium, and when a refrigerator is in the first control period after defrosting, the non-temporary computer-readable storage medium controls a control valve to connect to an ice making circuit, if an ice making evaporator requests refrigeration, such that the refrigerant can be controlled to flow into the ice making circuit preferentially after defrosting for the refrigerator, thereby effectively decreasing the time of the ice making compartment being in the high-temperature state caused by the defrosting, reducing the risk where ice tubes melt and melted ice cubes are adhered together resulted from re-freezing of the melted ice cubes. As a result, a long-term and high-quality storage of the ice cubes can be achieved.
The above and/or additional aspects and advantages of the present disclosure will become obvious and understandable with the following description for embodiments by combining the drawings.
Reference will be made in detail to embodiments of the present disclosure. The same or similar elements and the elements having same or similar functions are denoted by like reference numerals throughout the descriptions. The embodiments described herein with reference to drawings are explanatory, illustrative, and used to generally understand the present disclosure. The embodiments shall not be construed to limit the present disclosure.
The control method for a refrigerator, the control apparatus of a refrigerator, the refrigerator, the electronic device and the non-temporary computer readable storage medium according to embodiments of the present disclosure are described below with reference to the drawings.
At S1, a refrigerator being in a first control period after defrosting is detected and confirmed.
At S2, after detecting and confirming that an ice making evaporator requests refrigeration, a control valve is controlled to connect to an ice making circuit.
Specifically, as shown in
When the refrigerator is in the first control period after defrosting, if the ice making evaporator requests refrigeration, no matter whether the refrigerating evaporator requests refrigeration or not, the control valve is connected to the ice making capillary, such that the control valve is connected to the ice making circuit, and thus ensuring the refrigerant to be flowed into the ice making circuit preferentially when the ice making evaporator requests refrigeration after defrosting, and ensuring the temperature of the ice making compartment return to a preset range rapidly, thereby effectively decreasing the time of the ice making compartment being in the high-temperature state caused by the defrosting, reducing the risk where ice tubes melt and the melted ice cubes are adhered together resulted from re-freezing of the melted ice cubes. As a result, a long-term and high-quality storage of the ice cubes can be achieved.
According to some embodiments of the present disclosure, after detecting and confirming that the refrigerator is in the first control period after defrosting, the above control method may further include detecting and confirming that the ice making evaporator does not request refrigeration and a system evaporator requests refrigeration, and controlling the control valve to connect to a refrigerating circuit; or detecting and confirming that the ice making evaporator does not request refrigeration and the system evaporator does not request refrigeration, and controlling the control valve to remain at the current direction.
Specifically, as shown in
According to some embodiments of the present disclosure, the above control method further includes detecting and confirming that the refrigerator is in a non-first control period after defrosting; detecting and confirming that the ice making evaporator requests refrigeration and the system evaporator requests refrigeration; controlling the control valve to connect to the refrigerating circuit, when the ice making circuit is connected to the refrigerating circuit in series and parallel; controlling the control valve to connect to the refrigerating circuit and the ice making circuit respectively, when the ice making circuit is connected to the refrigerating circuit in parallel only.
Specifically, as shown in
As shown in
According to some embodiments of the present disclosure, after detecting and confirming that the refrigerator is in a non-first control period after defrosting, the above control method may further include detecting and confirming that the ice making evaporator requests refrigeration and the system evaporator does not request refrigeration, and controlling the control valve to connect to the ice making circuit; detecting and confirming that the ice making evaporator does not request refrigeration and the system evaporator requests refrigeration, and controlling the control valve to connect to the refrigerating circuit; detecting and confirming that the ice making evaporator does not request refrigeration and the system evaporator does not request refrigeration, and controlling the control valve to remain at the current direction.
Specifically, as shown in
It would be understood that the difference between
In summary, according to embodiments in the present disclosure, when the refrigerator is in the first control period after defrosting, if the ice making evaporator requests refrigeration, the control method for the refrigerator controls the control valve to connect to the ice making circuit, such that the refrigerant can be controlled to flow into the ice making circuit preferentially after defrosting for the refrigerator, thereby effectively decreasing the time of the ice making compartment being in the high-temperature state caused by the defrosting, reducing the risk where ice tubes melt and the melted ice cubes are adhered together resulted from re-freezing of the melted ice cubes. As a result, a long-term and high-quality storage of the ice cubes can be achieved.
Corresponding to the method for controlling a refrigerator as described above, the present disclosure further provides in embodiments a control apparatus of a refrigerator. Details that are not disclosed in the apparatus embodiments may refer to the above method embodiments, which are not repeated here in the apparatus embodiments.
The first detecting module 10 is configured to detect and confirm that the refrigerator is in the first control period after defrosting. The first controlling module 20 is configured to detect and confirm that an ice making evaporator requests refrigeration, and control a control valve to connect to an ice making circuit.
Specifically, the first detecting module 10 can detect and confirm that whether the refrigerator is in the first control period after defrosting. If the first detecting module 10 detects and confirms that the refrigerator is in the first control period after defrosting, the first controlling module 20 detects that whether the ice making evaporator requests refrigeration, and if the ice making evaporator requests refrigeration, depending on whether the refrigerating evaporator requests refrigeration or not, the first controlling module 20 connects the control valve to the ice making capillary, such that the control valve is connected to the ice making circuit, and thus ensuring the refrigerant to be flow into the ice making circuit preferentially when the ice making evaporator requests refrigeration after defrosting, and ensuring the temperature of the ice making compartment return to a preset range rapidly, thereby effectively decreasing the time of the ice making compartment being in the high-temperature state caused by the defrosting, reducing the risk where ice tubes melt and the melted ice cubes are adhered together resulted from re-freezing of the melted ice cubes. As a result, a long-term and high-quality storage of the ice cubes.
According to some embodiments of the present disclosure, the first controlling module 20 is further configured to: detect and confirm that the ice making evaporator requests refrigeration and the system evaporator does not request refrigeration, and control the control valve to connect to the ice making circuit; detect and confirm that the ice making evaporator does not request refrigeration and the system evaporator requests refrigeration, and control the control valve to connect to the refrigerating circuit; or detect and confirm that the ice making evaporator does not request refrigeration and the system evaporator does not request refrigeration, and control the control valve to remain at the current direction.
According to an embodiment of the present disclosure, the above control apparatus of a refrigerator may further include a second detecting module and a second controlling module.
The second detecting module is configured to detect and confirm that the refrigerator is in a non-first control period after defrosting. The second controlling module is configured to:
detect and confirm that the ice making evaporator requests refrigeration and the system evaporator requests refrigeration; control the control valve to connect to the refrigerating circuit, when the ice making circuit is connected to the refrigerating circuit in series and parallel; control the control valve to connect to the refrigerating circuit and the ice making circuit respectively, when the ice making circuit is connected to the refrigerating circuit in parallel only; detect and confirm that the ice making evaporator requests refrigeration and the system evaporator does not request refrigeration, and control the control valve to connect to the ice making circuit; detect and confirm that the ice making evaporator does not request refrigeration and the system evaporator requests refrigeration, and control the control valve to connect to the refrigerating circuit; or detect and confirm that the ice making evaporator does not request refrigeration and the system evaporator does not request refrigeration, and control the control valve to remain at the current direction.
In summary, according to the control apparatus of a refrigerator in embodiments of the present disclosure, the first detecting module detects and confirms that the refrigerator is in the first control period after defrosting, and the first controlling module detects and confirms that the ice making evaporator requests refrigeration, and controls the control valve to connect to the ice making circuit, such that the refrigerant can be controlled to flow into the ice making circuit preferentially after defrosting for the refrigerator, thereby effectively decreasing the time of the ice making compartment being in the high-temperature state caused by the defrosting, reducing the risk where ice tubes melt and melted ice cubes are adhered together resulted from re-freezing of the melted ice cubes. As a result, a long-term and high-quality storage of the ice cubes can be achieved.
Further, the present disclosure in embodiments further provides a refrigerator including a control apparatus of a refrigerator as described above.
According to embodiments of the present disclosure, the refrigerator can control the refrigerant using the above control apparatus to flow into the ice making circuit preferentially after defrosting for the refrigerator, thereby effectively decreasing the time of the ice making compartment being in the high-temperature state caused by the defrosting, reducing the risk where ice tubes melt and melted ice cubes are adhered together resulted from re-freezing of the melted ice cubes. As a result, a long-term and high-quality storage of the ice cubes can be achieved.
The present disclosure in embodiments further provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable by the processor, wherein the processor, when executing the program, achieves the method for controlling a refrigerator as described above.
According to embodiments of the present disclosure, when the processor executes the computer program stored in the memory, and when a refrigerator is in the first control period after defrosting, the electronic device controls a control valve to connect to an ice making circuit, if an ice making evaporator requests refrigeration, such that the refrigerant can be controlled to flow into the ice making circuit preferentially after defrosting for the refrigerator, thereby effectively decreasing the time of the ice making compartment being in the high-temperature state caused by the defrosting, reducing the risk where ice tubes melt and melted ice cubes are adhered together resulted from re-freezing of the melted ice cubes. As a result, a long-term and high-quality storage of the ice cubes can be achieved.
The present disclosure provides in embodiments a non-temporary computer-readable storage medium having stored therein a computer program that, when executed by a processor, achieves the method for controlling a refrigerator in the present disclosure as described above.
According to embodiments in the present disclosure, when the processor executes the computer program stored in the non-temporary computer-readable storage medium, and when a refrigerator is in the first control period after defrosting, the non-temporary computer-readable storage medium controls a control valve to connect to an ice making circuit, if an ice making evaporator requests refrigeration, such that the refrigerant can be controlled to flow into the ice making circuit preferentially after defrosting for the refrigerator, thereby effectively decreasing the time of the ice making compartment being in the high-temperature state caused by the defrosting, reducing the risk where ice tubes melt and melted ice cubes are adhered together resulted from re-freezing of the melted ice cubes. As a result, a long-term and high-quality storage of the ice cubes can be achieved.
In the specification, it should be understood that, the terms indicating orientation or position relationship such as “central,” “longitudinal,” “lateral,” “width,” “thickness,” “above,” “below,” “front,” “rear,” “right,” “left,” “vertical,” “horizontal,” “top,” “bottom,” “inner,” “outer,” “clockwise,” “counter-clockwise,” “axial,” “radial,” “circumferential” should be construed to refer to the orientation or position relationship as then described or as shown in the drawings. These terms are merely for convenience and concision of description and do not alone indicate or imply that the device or element referred to must have a particular orientation or must be configured or operated in a particular orientation. Thus, it cannot be understood to limit the present disclosure.
In addition, terms such as “first” and “second” are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or impliedly indicate quantity of the technical feature referred to. Thus, the feature defined with “first” and “second” may comprise one or more this features. In the description of the present disclosure, “a plurality of” means two or more than two this features, unless specified otherwise.
In the present disclosure, unless specified or limited otherwise, the terms “mounted,” “connected,” “coupled,” “fixed” and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integrated connections; may also be mechanical or electrical connections; may also be direct connections or indirect connections via intervening structures; may also be inner communications of two elements or mutual interaction between two elements, unless specified otherwise, which can be understood by those skilled in the art according to specific situations.
In the present disclosure, unless specified or limited otherwise, a structure in which a first feature is “on” or “below” a second feature may be an embodiment in which the first feature is in direct contact with the second feature, or an embodiment in which the first feature and the second feature are contacted indirectly via an intermediation. Furthermore, a first feature “on,” “above” or “on top of” a second feature may include an embodiment in which the first feature is right or obliquely “on,” “above” or “on top of” the second feature, or just means that the first feature is at a height higher than that of the second feature; while a first feature “below,” “under” or “on bottom of” a second feature may include an embodiment in which the first feature is right or obliquely “below,” “under” or “on bottom of” the second feature, or just means that the first feature is at a height lower than that of the second feature.
Reference throughout this specification to “an embodiment,” “some embodiments,” “an example,” “a specific example” or “some examples” means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the phrases such as “in some embodiments,” “in one embodiment,” “in an embodiment,” “in another example,” “in an example,” “in a specific example” or “in some examples,” in various places throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples. In addition, those skilled in the art can combine different embodiments or examples and features in different embodiments or examples without contradicting each other.
Although explanatory embodiments have been shown and described, it would be appreciated by those skilled in the art that the above embodiments cannot be construed to limit the present disclosure, and changes, alternatives, and modifications can be made in the embodiments in the scope of the present disclosure.
The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, applications and publications to provide yet further embodiments.
These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2019/070281 | 1/3/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/140238 | 7/9/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4328681 | Sakamoto | May 1982 | A |
4344295 | Limstromberg | Aug 1982 | A |
7681406 | Cushman et al. | Mar 2010 | B2 |
8484987 | Ducharme et al. | Jul 2013 | B2 |
20080190125 | Yoshioka et al. | Aug 2008 | A1 |
20120023975 | Yoon | Feb 2012 | A1 |
20130025303 | Yoon et al. | Jan 2013 | A1 |
20170030627 | Kim | Feb 2017 | A1 |
20180283758 | Ding et al. | Oct 2018 | A1 |
20180328642 | McCollough | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
1912511 | Feb 2007 | CN |
100374799 | Mar 2008 | CN |
102374722 | Mar 2012 | CN |
102997609 | Mar 2013 | CN |
103574959 | Feb 2014 | CN |
106123478 | Nov 2016 | CN |
108885050 | Nov 2018 | CN |
2401564 | Jan 2012 | EP |
4-9566 | Jan 1992 | JP |
2002022336 | Jan 2002 | JP |
3545617 | Jul 2004 | JP |
2006-226615 | Aug 2006 | JP |
2014-35128 | Feb 2014 | JP |
WO 2010099439 | Sep 2010 | WO |
Entry |
---|
Canadian Office Action dated Oct. 18, 2022, for the corresponding Canadian Patent Application No. 3,126,296, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20220099354 A1 | Mar 2022 | US |