The present subject matter relates generally to refrigerator appliances, and more particularly, to refrigerator appliances having convertible compartments.
Certain refrigerator appliances utilize sealed systems for cooling chilled chambers of the refrigerator appliances. A typical sealed system includes an evaporator and a fan. The fan generates a flow of air across the evaporator to cool the flow of air. The cooled air is then provided through an opening into the chilled chamber to maintain the chilled chamber at a desired set point temperature. Air from the chilled chamber is circulated back through a return duct to be re-cooled by the sealed system during operation of the refrigerator appliance, maintaining the chilled chamber at the desired temperature.
Certain refrigerators appliances include multiple freezer compartments configured for maintaining different temperatures for storing different types of food and drink items. For example, a conventional quad door bottom mount refrigerator can include a freezer chamber having two separate freezer compartments that are maintained at different temperatures. More specifically, a first freezer compartment may be maintained at a conventional freezer temperature (e.g., around 0° F.), while a second “convertible” freezer compartment may be adjusted between a conventional freezer temperature and relatively warm temperatures.
However, achieving different temperatures in each of the compartments of such refrigerator appliances typically requires a separate evaporator for each compartment. In this regard, a single compressor may drive refrigerant through a four-way valve to an evaporator configured for cooling a single compartment at a time. However, additional evaporators result in added costs, more complicated assembly, and a more complex refrigerant plumbing configuration. In addition, a four-way valve may be required or operational limitations may arise, e.g., only a single compartment may be cooled at a single time due to the shared compressor. Additionally, conventional refrigerator appliances typically include electric heaters for warming the convertible compartment to the desired set point temperature. Such electric heaters can be detrimental to energy performance.
Accordingly, a refrigerator appliance including a convertible compartment which can be conditioned without requiring an additional evaporator dedicated to the convertible compartment would be useful.
Aspects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.
In one exemplary aspect, a refrigerator appliance is provided. The refrigerator appliance defines a vertical direction, a lateral direction, and a transverse direction. The vertical, lateral, and transverse directions are mutually perpendicular. The refrigerator appliance includes a cabinet extending from a top to a bottom along the vertical direction, from a left side to a right side along the lateral direction, and from a front side to a rear side along the transverse direction. A fresh food chamber is defined in the cabinet. The fresh food chamber extends along the vertical direction between the top and the bottom of the cabinet and along the lateral direction between the left and right sides of the cabinet. A freezer chamber is also defined in the cabinet. The freezer chamber extends along the vertical direction between the top and bottom of the cabinet and along the lateral direction between the left and right sides of the cabinet. The freezer chamber is spaced apart from the fresh food chamber along the vertical direction. A convertible chamber is defined in the cabinet. The convertible chamber extends along the vertical direction between the top and bottom of the cabinet and along the lateral direction between the left and right sides of the cabinet. The convertible chamber is spaced apart from the fresh food chamber along the vertical direction and spaced apart from the freezer chamber along the lateral direction. A plenum is also defined in the cabinet. The plenum is aligned with the convertible chamber along the vertical and lateral directions and spaced from the convertible chamber along the transverse direction. A first damper selectively provides fluid communication between the fresh food chamber and the plenum. A second damper selectively provides fluid communication between the freezer chamber and the plenum. A fan is disposed between the convertible chamber and the plenum. The fan is configured to force air from the plenum into the convertible chamber.
In another exemplary aspect, a refrigerator appliance is provided. The refrigerator appliance includes a cabinet comprising a plurality of insulated mullions. The insulated mullions at least partially define a fresh food chamber, a freezer chamber, a convertible chamber, and a plenum. The refrigerator appliance also includes a first damper selectively providing fluid communication between the fresh food chamber and the plenum, a second damper selectively providing fluid communication between the freezer chamber and the plenum, and a fan disposed between the convertible chamber and the plenum. The fan is configured to force air from the plenum into the convertible chamber.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
As used herein, the terms “first,” “second,” and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components. The terms “upstream” and “downstream” refer to the relative direction with respect to fluid flow in a fluid pathway. For example, “upstream” refers to the direction from which the fluid flows, and “downstream” refers to the direction to which the fluid flows. Terms such as “inner” and “outer” refer to relative directions with respect to the interior and exterior of the refrigerator appliance, and in particular the food storage chamber(s) defined therein. For example, “inner” or “inward” refers to the direction towards the interior of the refrigerator appliance. Terms such as “left,” “right,” “front,” “back,” “top,” or “bottom” are used with reference to the perspective of a user accessing the refrigerator appliance. For example, a user stands in front of the refrigerator to open the doors and reaches into the food storage chamber(s) to access items therein.
As used herein, terms of approximation such as “generally,” “about,” or “approximately” include values within ten percent greater or less than the stated value. When used in the context of an angle or direction, such terms include within ten degrees greater or less than the stated angle or direction, e.g., “generally vertical” includes forming an angle of up to ten degrees in any direction, e.g., clockwise or counterclockwise, with the vertical direction V.
Cabinet 102 defines chilled chambers for receipt of food items for storage. In particular, cabinet 102 defines fresh food chamber 122 positioned at or adjacent top 104 of cabinet 102 with a freezer chamber 124 and a convertible chamber 123 arranged at or adjacent bottom 106 of cabinet 102. As such, refrigerator appliance 100 is generally referred to as a bottom mount refrigerator. It is recognized, however, that the benefits of the present disclosure apply to other types and styles of refrigerator appliances such as, e.g., a top mount refrigerator appliance or a side-by-side style refrigerator appliance. As another example, although the illustrated example embodiment depicts the freezer chamber 124 on the left side and the convertible chamber 123 on the right side, it is recognized that such configuration is provided by way of example only and not limitation, e.g., the freezer chamber 124 and the convertible chamber 123 may be transposed in some embodiments. Consequently, the description set forth herein is for illustrative purposes only and is not intended to be limiting in any aspect to any particular refrigerator chamber configuration.
Refrigerator doors 128 are each rotatably hinged to a corresponding edge of cabinet 102 for selectively accessing fresh food chamber 122. Similarly, freezer door 130 and convertible chamber door 131 are rotatably hinged to an edge of cabinet 102 in the illustrated example embodiment for selectively accessing freezer chamber 124 and convertible chamber 123. As another example, one or both of the freezer door 130 and the convertible chamber door 131 may instead be a front portion of a slidable drawer which can be selectively moved in and out of the respective chamber 123 and/or 124 along transverse direction T. To prevent leakage of cool air, the doors 128, 130, 131, and/or cabinet 102 may define one or more sealing mechanisms (e.g., rubber gaskets, not shown) at the interface where the doors 128, 130, 131 meet cabinet 102. Refrigerator doors 128, freezer door 130, and convertible chamber door 131 are shown in the closed configuration in
In an exemplary embodiment, cabinet 102 also defines a mechanical compartment 60 at or near the bottom 106 of the cabinet 102 for receipt of a hermetically sealed cooling system configured for transporting heat from the inside of the refrigerator to the outside. One or more ducts may extend between the mechanical compartment 60 and the chilled chambers 122, 123, and/or 124 to provide fluid communication therebetween, e.g., to provide chilled air from the hermetically sealed cooling system, e.g., from an evaporator thereof, to one or more of the chilled chambers 122, 123, and/or 124. As is generally understood by those of skill in the art, the hermetically sealed system contains a working fluid, e.g., refrigerant, which flows between various heat exchangers of the sealed system where the working fluid changes phases. For example, the hermetically sealed system includes at least one evaporator where the working fluid absorbs thermal energy and changes from a liquid state to a gas state and at least one condenser where the working fluid releases thermal energy and returns to the liquid state from the gas state. As is understood, because the system is sealed, the working fluid is contained within the system and travels between the heat exchangers of the hermetically sealed system. A fan is typically provided at each heat exchanger of the sealed system. For example, a fan may force air across and around the at least one evaporator to transfer thermal energy from the air to the evaporator (and more particularly, to the working fluid therein), thereby generating a flow of chilled air which may be provided to one or more of the chilled chambers 122, 123, and/or 124. In some embodiments, some components of the sealed system may be located on different sides of a thermally insulated barrier, e.g., the at least one condenser may be positioned outside of the thermally insulated barrier with respect to the chilled chambers such that heat released from the working fluid as it condenses is directed away from the chilled chambers and to an ambient environment around the refrigerator appliance 100, and the at least one evaporator may be positioned on the same side of the thermally insulated barrier as the chilled chambers, whereby the flow of chilled air from the evaporator(s) to the chilled chambers may be entirely contained within a thermally insulated enclosure.
Refrigerator appliance 100 also includes a dispensing assembly 132 for dispensing liquid water and/or ice. Dispensing assembly 132 includes a dispenser 134 positioned on or mounted to an exterior portion of refrigerator appliance 100, e.g., on one of refrigerator doors 128. Dispenser 134 includes a discharging outlet 136 for accessing ice and liquid water. An actuating mechanism 138, shown as a paddle, is mounted below discharging outlet 136 for operating dispenser 134. In alternative exemplary embodiments, any suitable actuating mechanism may be used to operate dispenser 134. For example, dispenser 134 can include a sensor (such as an ultrasonic sensor) or a button rather than the paddle. A control panel 140 is provided for controlling the mode of operation. For example, control panel 140 includes a plurality of user inputs (not labeled), such as a water dispensing button and an ice-dispensing button, for selecting a desired mode of operation such as crushed or non-crushed ice.
Discharging outlet 136 and actuating mechanism 138 are an external part of dispenser 134 and are mounted in a dispenser recess 142. Dispenser recess 142 is positioned at a predetermined elevation convenient for a user to access ice or water and enabling the user to access ice without the need to bend-over and without the need to open refrigerator doors 128. In the exemplary embodiment, dispenser recess 142 is positioned at a level that approximates the chest level of an adult user. According to an exemplary embodiment, the dispensing assembly 132 may receive ice from an icemaker disposed in a sub-compartment of the fresh food chamber 122.
Refrigerator appliance 100 further includes a controller 144. Operation of the refrigerator appliance 100 is regulated by controller 144 that is operatively coupled to control panel 140. In some exemplary embodiments, control panel 140 may represent a general purpose I/O (“GPIO”) device or functional block. In some exemplary embodiments, control panel 140 may include input components, such as one or more of a variety of electrical, mechanical or electro-mechanical input devices including rotary dials, push buttons, touch pads, and touch screens. Control panel 140 can be communicatively coupled with controller 144 via one or more signal lines or shared communication busses. Control panel 140 provides selections for user manipulation of the operation of refrigerator appliance 100, e.g., whereby a user may provide one or more set point temperatures for the various compartments 122, 123, and 124. In response to user manipulation of the control panel 140, controller 144 operates various components of refrigerator appliance 100. For example, controller 144 is operatively coupled or in communication with various airflow components, e.g., dampers and fans, as discussed below. Controller 144 may also be communicatively coupled with a variety of sensors, such as, for example, chamber temperature sensors or ambient temperature sensors. Such chamber temperature sensors and/or ambient temperature sensors may be or include thermistors, thermocouples, or any other suitable temperature sensor. Controller 144 may receive signals from these temperature sensors that correspond to the temperature of an atmosphere or air within their respective locations.
Controller 144 includes memory and one or more processing devices such as microprocessors, CPUs or the like, such as general or special purpose microprocessors operable to execute programming instructions or micro-control code associated with operation of refrigerator appliance 100. The memory can represent random access memory such as DRAM, or read only memory such as ROM or FLASH. The processor executes programming instructions stored in the memory. The memory can be a separate component from the processor or can be included onboard within the processor. Alternatively, controller 144 may be constructed without using a microprocessor, e.g., using a combination of discrete analog and/or digital logic circuitry (such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, and the like) to perform control functionality instead of relying upon software. The controller 144 may be positioned in a variety of locations throughout refrigerator appliance 100. In the illustrated embodiment, the controller 144 is located within a control panel area 140 of one of the refrigerator doors 128, as shown in
Turning now to
As may be seen in
As may be seen in
As best seen in
As shown in
The fan 208 may be disposed between the convertible chamber 123 and the plenum 121. In various embodiments, the fan 208 may be a single speed fan or a variable speed fan. The fan 208 may be configured to force air from the plenum 121 into the convertible chamber 123. For example, the fan 208 may be positioned within a wall 216 which separates the convertible chamber 123 from the plenum 121, as illustrated in
The plenum 121 may provide air to the convertible chamber 123 at a desired temperature according to, e.g., a user-selected temperature setting or set point temperature which may be received from control panel 140 and/or controller 144. For example, a first damper 204 may be configured to selectively provide fluid communication between the fresh food chamber 122 and the plenum 121 and a second damper 206 may be configured to selectively provide fluid communication between the freezer chamber 124 and the plenum 121. For example, each of the dampers 204 and 206 may be movable between an open position which permits fluid communication, e.g., air flow, and a closed position which restricts or prevents fluid communication, e.g., air flow. As may be seen in
In at least some embodiments, the first damper 204 and the second damper 206 may be adjustable over a range of positions between the open position and the closed position. In such embodiments, the convertible chamber 123 may be operable over a range of temperatures by adjusting the air flow rate into the plenum 121 from each of the fresh food chamber 122 and the freezer chamber 124, e.g., the first damper 204 may be fully opened and the second damper 206 may be partially opened, e.g., half opened, one quarter opened, etc., such that the convertible chamber 123 may be operated at a temperature less than the fresh food chamber 122 and greater than the freezer chamber 124. In other examples, both dampers 204 and 206 may be partially opened and various other combinations of damper positions are also possible. For example, the position of the dampers 204 and 206 may be controlled by a pulse width modulation signal, whereby the dampers 204 and 206 may be moved from the open position to the closed position and vice versa, including various positions therebetween, over time in order to achieve a set point temperature between the temperature of the fresh food chamber 122 and the temperature of the freezer chamber 124, and/or, in at least some embodiments, a set point temperature above the temperature of the fresh food chamber 124, as described in more detail below.
For example, the temperature of the fresh food chamber 122 may be within a range between approximately thirty-four degrees Fahrenheit (34° F.) and approximately forty-two degrees Fahrenheit (42° F.), such as about thirty-seven degrees Fahrenheit (37° F.). Also by way of example, the temperature of the freezer chamber 124 may be within a range between approximately negative six degrees Fahrenheit (−6° F.) and approximately six degrees Fahrenheit (6° F.), such as about zero degrees Fahrenheit (0° F.). It should be understood that fresh food chamber 122 and freezer chamber 124 may be selectively operable at any number of various temperatures and/or temperature ranges as desired or required per application. Accordingly, by varying the position of the first and second dampers 204 and 206, e.g., between and including the open and closed positions as described above, the convertible chamber 123 may be operable within a range of temperatures between approximately negative six degrees Fahrenheit (−6° F.) and approximately forty-two degrees Fahrenheit (42° F.).
As mentioned above, the refrigerator appliance 100 includes a sealed system and the sealed system includes at least one evaporator configured to generate a flow of chilled air, e.g., by transferring heat from the air to the working fluid within the sealed system, as described above. In at least some embodiments, the refrigerator appliance 100 may include two evaporators, a first evaporator in fluid communication with the fresh food chamber 122, e.g., a fresh food evaporator, and a second evaporator in fluid communication with the freezer chamber 124, e.g., a freezer evaporator. The refrigerator appliance 100 may not include an evaporator dedicated to the convertible chamber 123, rather, the convertible chamber 123 may be selectively cooled by one or both of the fresh food evaporator and the freezer evaporator by opening one or both of the dampers 204 and 206. For example, when the first damper 204 is open, chilled air may flow from the fresh food evaporator to the fresh food chamber 122 and from the fresh food chamber 122 to the convertible chamber 123 via the plenum 121 and first damper 204. Similarly, and as another example, when the second damper 206 is open, chilled air may flow from the freezer evaporator to the freezer chamber 124 and from the freezer chamber 124 to the convertible chamber 123 via the plenum 121 and second damper 206. Thus, the refrigerator appliance 100 may include only two evaporators and a three-way valve to selectively direct a flow of liquid working fluid to the fresh food evaporator and/or the freezer evaporator. Accordingly, the plenum 121 disclosed herein may provide a convertible chamber 123 without requiring an additional evaporator or a four-way valve in the sealed system of the refrigerator appliance 100. Not including a dedicated evaporator for the convertible chamber 123 reduces the overall complexity of the refrigerator appliance 100 in several ways. For example, a defrost heater for the convertible chamber 123 is not required and plumbing to drain meltwater generated by operation of the defrost heater may also be omitted.
In some embodiments, it may be desirable to raise the temperature of the convertible chamber 123 above the temperatures of the freezer chamber 124 and the fresh food chamber 122. For example, in some instances, it may be desirable to raise the temperature of convertible chamber 123 such that it may reach and maintain relatively high temperatures, e.g., up to about 60° F. For example, a temperature of about 55° F. within convertible chamber 123 may be useful for storing certain wines and other food items. As another example, a temperature of about 43° F. within convertible chamber 123 may be useful for storing citrus fruits and other food items.
As illustrated for example in
In some embodiments, the first damper 204, the second damper 206, and the third damper 210 may be operatively coupled with the controller 144. When a user selects a set point temperature indicative of a freezer temperature, controller 144 can send one or more signals and the dampers 204, 206, and 210, and/or one or more actuators connected thereto, can receive the one or more signals to open the second damper 206. Based at least in part on these signals, the second damper 206 can be articulated to the open position, thereby allowing cold air (e.g., air within the above-described freezer temperature range) to flow into the convertible chamber 123. In contrast, when a user selects a set point temperature indicative of a temperature warmer than the freezer temperature (e.g., a relatively high temperature of 55° F. or a fresh food temperature of 37° F.), controller 144 can send one or more signals and the dampers 204, 206, and 210 can receive the one or more signals to close (or partially close, in at least some embodiments, depending on the set point temperature selected) the second damper 206 and at least partially open one or both of the first damper 204 and the third damper 210. As a result, cold air flow into the convertible chamber 123 is reduced or ceases, while cool air (e.g., air within the above-described fresh food temperature range) and/or room temperature air may flow into the convertible chamber 123, thereby allowing the convertible chamber 123 to be warmed to the set point temperature.
In some embodiments, for example as illustrated in
As mentioned above, the convertible chamber 123 may be operable within a range of temperatures between approximately negative six degrees Fahrenheit (−6° F.) and approximately forty-two degrees Fahrenheit (42° F.). The operating temperature of the convertible chamber 123 may be determined by a temperature setting, e.g., a user-selected set point temperature, which may be received by the controller 144, as described above. Embodiments of the present disclosure may include methods of operating a refrigerator appliance such as the exemplary method 300 illustrated in
Method 300 may also include a step 320 of measuring or determining the temperatures of the chilled chambers 122, 123, and 124. For example, such measurement may be made using chamber temperature sensors, e.g., thermocouples, as mentioned above. The measured chamber temperatures from step 320 may then be compared with the chamber set point temperatures and when, as shown at step 330, the measured temperature of the convertible chamber is above the convertible chamber set point temperature, the method 300 may proceed to open one or more dampers, such as one or more of the first, second, and third dampers 204, 206, and 210 described above, depending on the convertible chamber temperature, which may be either one or both of the set point temperature or the measured temperature of the convertible chamber. For example, which damper(s) are opened may depend on where the convertible chamber temperature falls within a range or set of ranges of temperature values, as described below. When the method 300 does not determine that the measured temperature of the convertible chamber exceeds the convertible chamber set point, then normal operation of the refrigerator appliance 100 may continue. The continuation of normal operation in accordance with the present disclosure is generally continuance of operation of the refrigerator appliance 100 in accordance with the present settings, with no adjustments in accordance with the present method.
The method 300 may include a step 340 of comparing the convertible chamber temperature, e.g., the convertible chamber set point temperature and/or the measured temperature of the convertible chamber 123, to the fresh food chamber temperature. When the convertible chamber temperature is within a first range, for example in the illustrated embodiment of
After opening the first damper 204 at step 350, the method 300 may further include a step 360, as illustrated in
When the convertible chamber temperature is within a second range, e.g., is less than the fresh food temperature, the method 300 may include a step 370 of opening the second damper 206 to provide fluid communication from the freezer chamber 124 to the convertible chamber 123. For example, the second range may be or include the freezer temperature range described above, e.g., between approximately negative six degrees Fahrenheit (−6° F.) and approximately six degrees Fahrenheit (6° F.), etc. In some embodiments, the second range may include any temperature within the operating range of the refrigerator appliance 100 below the first range, e.g., the second range may be between approximately negative six degrees Fahrenheit (−6° F.) and approximately thirty-three degrees Fahrenheit (33° F.).
After opening the second damper 206 at step 370, the method 300 may further include a step 380, as illustrated in
Thus, method 300 may also include at least partially opening one or both the first damper 204 and the second damper 206, as described above, when the temperature setting is between the fresh food temperature range and the freezer temperature range. For example, method 300 may include, and the controller 144 may be configured for, selecting the coldest possible source air for a given temperature setting. For example, when the temperature setting is within the second range and is also greater than the current operating temperature of the freezer chamber 124, the method 300 may include partially opening the second damper 206 while the first damper 204 may be closed.
In some embodiments, the method 300 may further include determining whether the respective source chamber, e.g., the fresh food chamber 122 when the first damper 204 is open and/or the freezer chamber 124 when the second damper 206 is open, is actively cooling. For example, as mentioned above, the refrigerator appliance 100 may include a fresh food evaporator and a freezer evaporator such that determining whether the source chamber is active may include determining which, if any, of the fresh food evaporator and a freezer evaporator is active. Such determination may be based on, for example, a position of the three-way valve and/or a status of a compressor of the sealed system. For example, when the compressor is inactive, it may be determined that neither of the source chambers is actively cooling. Also by way of example, when the compressor is active and the three-way valve is in a first position to direct refrigerant to the fresh food evaporator, it may be determined that the fresh food chamber 122 is actively cooling, or when the compressor is active and the three-way valve is in a second position to direct refrigerant to the freezer evaporator it may be determined that the freezer chamber is actively cooling. Additionally, when the compressor is active and the three-way valve is in a third position to direct refrigerant to both the fresh food chamber 122 and the freezer chamber 124, it may be determined that both the fresh food chamber 122 and the freezer chamber 124 are actively cooling.
In some cases, the fresh food chamber 122 or freezer chamber 124 may not be actively cooling when there is a call for cooling the convertible chamber 123, e.g., when a temperature setting is received at step 310 that is lower than a current temperature of the convertible chamber 123 (e.g., which may be measured by an appropriate temperature sensor, as mentioned above). In such cases, the method may include delaying cooling of the convertible chamber 123 or may include activating cooling of one or both of the fresh food chamber 122 and the freezer chamber 124 in order to provide chilled air to the convertible chamber 123.
For example, in some embodiments, the method may include determining that the fresh food chamber 122 is actively cooling before opening the first damper 204 when the temperature setting is within the first range and determining that the freezer chamber is actively cooling before opening the second damper when the temperature setting is within the second range. Thus, cooling of the convertible chamber 123 may be delayed until the source chamber(s) are actively cooling.
As another example, the method may include activating the fan 208 only after determining the source chamber is actively cooling. For example, the method 300 may include determining whether the fresh food chamber is actively cooling and determining whether the freezer chamber is actively cooling. In such embodiments, the method 300 may further include activating the fan 208 to force air from the plenum 121 into the convertible chamber 123 after opening the first damper 204 when the fresh food chamber 122 is actively cooling and may include activating the fan 208 to force air from the plenum 121 into the convertible chamber 123 after opening the second damper 206 when the freezer chamber 124 is actively cooling.
In some embodiments, the method 300 may include activating cooling of one or both of the fresh food chamber 122 and the freezer chamber 124 in order to provide chilled air to the convertible chamber 123. For example, the method 300 may include determining whether the fresh food chamber is actively cooling when the temperature setting is within the first range and determining whether the freezer chamber is actively cooling when the temperature setting is within the second range. In such embodiments, the method 300 may further include activating cooling of the fresh food chamber when the temperature setting is within the first range and the fresh food chamber is not actively cooling and/or activating cooling of the freezer chamber when the temperature setting is within the second range and the freezer chamber is not actively cooling.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.