The invention relates generally to refrigerator coolers and housing cabinets in addition to an improved method to install, secure and seal a compressor unit into a refrigerator cooler and housing cabinet.
In most commercial machines that include refrigeration units, such as industrial refrigerators, commercial refrigerators, coolers and vending machines, it is often necessary to install the refrigerator compressor into the refrigerator housing cabinet, such as during initial assembly or during maintenance. This can be a difficult task since the compressor is heavy and cumbersome. Moreover, in many instances the equipment can be damaged during the insertion and sealing process. This is particularly true for systems in which the compressor, condenser and evaporator are assembled as a single refrigeration unit to be installed in a refrigeration cabinet. In such systems, the top of the refrigerator unit and the interior of the housing cabinet may be harmed during insertion of the refrigeration unit into the cabinet. Specifically, portions of the refrigeration unit and the housing cabinet are often scratched, chipped or torn during insertion.
To correct some of these problems, prior art focused on a variety of solutions. Unfortunately, while some problems were addressed, others were not remedied. For example, in U.S. Pat. No. 4,539,737 to Kerpers et. al., the inventor taught a method for installing a compressor into a cooling device. In particular, U.S. Pat. No. 4,593,737 provided for a mounting plate onto which the user placed the compressor motor. The mounting plate is then installed into the housing cabinet. After connecting the compressor motor to the compressor unit with the proper electrical circuits, the compressor motor is installed and the mounting plate is removed. In this invention, however, the compressor motor is installed separately from, and attached independently to, the other portions of the cooling device. The entire compressor unit is not secured into the housing. As such, it is difficult to move or reposition the cooling device without first disconnecting the coolant conduits of the compressor motor.
Similarly, in U.S. Pat. No. 5,711,162 to Wolanin et al., the patent teaches a refrigerator compressor motor mounting pan arrangement formed from a metal plate. The compressor motor sits atop the plate. The plate also includes wheel wells so that the compressor motor can be transported along with the compressor and refrigerator unit. A series of brackets holds the compressor motor in place on the plate; however, as in the ′737 Patent, the compressor and the motor are not completely secured within the housing, but rather, the housing utilizes the brackets to hold the compressor motor in place. Such an arrangement does not allow for the formation of a tight seal between the whole compressor unit and the refrigerator housing.
As noted above, the prior art failed to address problems related to “sealing” or securing the compressor into the cabinet. Specifically, based on the weight and cumbersome nature of the compressor unit, it is often difficult to connect the whole compressor to the cabinet to form a tight seal. In other, unrelated arts, the concept of “sealing” a cooling device within its housing is known; however, in these arts, the applications do not address the issues related to any damage to the cooling unit caused by such sealing mechanisms nor are the compressor units of the same size and heft. For example, U.S. Pat. No. 4,539,737 to Kerpers et al. (′″737 Patent) describes a method for installing a motor-compressor unit in a cooling device, specifically an air conditioner. In this patent, a type of mounting plate is attached to the housing cabinet. During the installation of an air conditioner motor compressor unit, the unit is pushed along flanges attached to the mounting plate until the unit is “sealed” in the cabinet. Again, this combination of features does not alleviate the issues related to damage caused to the unit and/or the housing cabinet. In actuality, the movement of the unit across the flanges and into the cabinet likely will scratch, tear or in some measure damage the cabinet. Furthermore, this patent, while not specifically limited to air conditioners, directs its embodiments to commercial air conditioners and, as such, does not describe how the system would work in the unrelated field of refrigeration units. This is a major concern considering the large discrepancy between the size and function of the appliances.
Accordingly, it is the object of the present invention to provide a refrigerator cooler and housing cabinet with an installed, secured and sealed refrigerator compressor unit.
It is a further object of the present invention to provide a refrigerator cooler and housing cabinet in which a refrigerator compressor unit is installed without damaging the compressor unit, cooler or the cabinet and, at the same time, forming a secure seal between the compressor unit and the cooler and cabinet.
It is a further object of the present invention to provide a refrigerator cooler and housing cabinet with an installed, secured and sealed refrigerator compressor unit in which the method of installing, securing and sealing the unit is safe and easy to perform.
It is still a further object of the present invention to provide a refrigerator cooler and housing cabinet with an installed, secured and sealed refrigerator compressor unit that is economical to manufacture.
It is still a further object of the invention to provide a refrigerator cooler and housing cabinet with an installed, secured and sealed refrigerator compressor unit that is durable and can be used by businesses as well as individuals.
Other objects and advantages will be apparent from the remaining portion of the specification.
The preferred embodiment of the apparatus of the present invention includes a refrigerator cooler with a housing cabinet that includes an opening for the insertion of the refrigeration unit. The refrigerator cooler may be a industrial refrigeration unit, commercial refrigerator, vending machine or any other machine with requirement for a refrigeration unit. The refrigeration unit has a back side, a front side, a lower side and an upper side. In the preferred embodiment, the refrigeration unit is made of metal. The upper surface of the unit includes an evaporator inlet opening and evaporator cool air exhaust opening. The perimeter of these openings are surrounded by a seal—preferably made of neoprene or a similar flexible material. Further, the lower side includes two incline surfaces that both extend downwardly towards the front side of the unit. Each inclined surface also includes a horizontal resting surface so that when the refrigeration unit is resting inside the cooler and compartment, the unit rests upon the horizontal resting surface. In the preferred embodiment, the unit also includes a flat metal plate or lip that extends downward from the front side of the unit. This lip includes openings for mating with bolts on the cooler to help secure the unit in place in the cooler.
The refrigeration unit housing compartment has a back side, a front side, a lower side and an upper side and an opening to receive the unit. In addition, the compartment has an upper support surface and a lower support surface, both preferably made of metal. The upper surface of the cabinet also includes an evaporator inlet opening and an evaporator cool air exhaust opening. These openings align with the corresponding openings on the unit so as to allow the air flow from the unit through the openings and into the cooler.
In addition, the lower support surface of the compartment also has two incline surfaces that extend upwardly towards the back surface of the compartment. These incline surfaces also include horizontal resting surfaces onto Which the unit will ultimately sit.
The compartment includes rails along the lower surface. The unit slides along the rails until the unit's incline surfaces engage the rails and simultaneously the lower incline surfaces of the compartment engage the unit so as to lift or raise the unit and raise it into position. In this position, the seal of the unit engages the upper portion of the compartment. In the preferred embodiment, the seal includes a magnetic core so that the seal will be secured against the upper portion of the metal compartment.
In addition, the lower surface of the compartment includes a bracket that runs across the front of the lower surface of the compartment. This bracket includes the aforementioned bolts that are secured into the openings in the lower lip of the unit. In this manner, the unit is secured inside the refrigeration compartment without damaging the unit or the compartment.
a is a left side perspective of the unit as it enters the cabinet.
b is a left side perspective view of the unit of 11a as it is pushed along line 11-11.
-c is a left side perspective view of the compressor unit of 11a as it reaches its final position.
A refrigerator cooler 1 constructed in accordance with the present invention is seen generally in
As seen throughout
Also as seen in
As demonstrated in
The lower and upper interior sections are separated so that the condenser and the evaporator (not shown) of the unit 4 are separated. As seen in
As seen in
As seen generally in
More particularly, the incline surfaces 62a and 62b are located along rails 64a and 64b which are located on the lower support surface 61, as seen in
As shown in
A grill cover 82, as seen in
As seen clearly in
Up to this point, a space existed between the unit 4 and upper surface of the compartment 60. However, as the unit 4 moves upward in the compartment 48, the space decreases as seen clearly in