Referring to
Referring also to
First hinge element 24 may be configured to interact with door 16, and second hinge element 22 may be configured to interact with body 14, together biasing door 16 toward a closed position against body 14 via a spring force of spring 23. Interaction between first hinge element 24 and door 16 may be enabled by mounting first hinge element 24 to door 16 by a variety of means. In one embodiment, an adhesive material such as strips of adhesive tape 30a and 30b, e.g. double stick tape, may be used to affix first hinge element 24 to door 16. Other mounting means such as epoxies and the like or fasteners might alternatively be used. With first hinge element 24 thus mounted to door 16, the spring force of spring 23 can impart a tendency on hinge elements 24 and 22 to rotate toward one another, thus biasing door 16 toward a closed position against body 14. In the embodiment and viewpoint of
Each of hinge elements 24 and 22 may include at least one planar face, for example, a plurality of planar faces. Second hinge element 22 may comprise a first, or inner planar face 27a and an opposite planar face 27b. While panel 26 and second hinge element 22 are shown as separate members, in other embodiments they might comprise a single part. Thus, the description herein of panel 26 and second hinge element 22 being coupled together should not be construed to require that distinct components be used. A separate panel 26 such as a wooden or elastomeric panel, however, coupled with second hinge element 22 via adhesive material or fasteners, will provide one practical implementation strategy.
In the embodiment shown in
Turning to
Panel 26 may also include a length dimension L2 which will typically be greater than L1. The relatively greater length of panel 26 will enable second hinge element 22 to interact with body 14 of refrigerator 12 across the gap between door 16 and body 14 filled by cushion 15 when door 16 is closed. In other words, as mentioned above, panel 26 may serve as an extension whereby second hinge element 22 can reach far enough to bear against body 14 to enable biasing of door 16 toward a closed position. The relative length of panel 26 may be varied to provide a relatively greater, or relatively lesser, leverage against body 14, as desired. A wear strip 28, which may be wider than panel 26, may be provided and may be attached to body 14 with adhesive material, for example, to protect body 14 from scratching by panel 26 as it slidably interacts therewith, further described below. Wear strip 28, or another suitable material might instead be applied to panel 26.
Door closer 10 may be provided as a kit for adapting a storage device such as a refrigerator for automatic closing. A kit according to the present disclosure may include certain of the components of door closer 10, including hinge 20 and its associated hinge elements 22 and 24, panel 26, and means for mounting one of hinge elements 24 and 22 to door 16, such as double stick tape or fasteners. In some embodiments, such a kit may also include wear strip 28. In still further embodiments, hinge 20 might have an adjustable biasing force, for example, via means for varying coiling of spring 23 to increase or decrease the relative biasing force thereof.
When it is desirable to adapt a refrigerator for automatic closing of one or more of its doors, a user may obtain a kit, as described herein. Where the kit includes a wear strip 28, wear strip 28 may be initially applied to an exterior of a refrigerator unit such as to body 14 of refrigerator 12. Next, the user may apply strips of double stick tape, 30a and/or 30b, to either of first hinge element 24 or surfaces 19 of a refrigerator door 16, then mount hinge element 24 to door 16 via tape strips 30a and 30b. It should be appreciated that although first hinge element 24 is illustrated having two separate plate members 24a and 24b, only a single plate member might be used. In particular, designs are contemplated wherein only plate member 24b is used.
Referring also to
When a user no longer holds door 16 open, the biasing force of spring 23 will impart a tendency for door 16 to return toward a closed position, against body 14 and cushioned and sealed via cushion 15. As such, first hinge element 24 will interact with door 16 via tape strips 30a and 30b, and second hinge element 22 will slidably interact with body 14 via panel 26, biasing door 16 toward a closed position. Thenceforth, door 16 will tend to return to its closed position, approximately as shown in
The present description is for illustrative purposes only, and should not be construed to narrow the breadth of the present disclosure in any way. Thus, those skilled in the art will appreciate that various modifications might be made to the presently disclosed embodiments without departing from the full and fair scope of the present disclosure. The components of door closer 16 disclosed herein are not limited with respect to materials, configuration and operation, except as specifically set forth. Thus, while metallic plate members are contemplated to be useful in constructing hinge elements 22 and 24, other materials might be used. Panel 26 might be wood, plastic, metallic, or yet another material, so long as it has sufficient rigidity to provide for interaction with body 14 as described herein. Similarly, a variety of shapes, surface ornamentation and other features might be applied to the components of door closer 10 without departing from the scope of the present disclosure. Still further embodiments are contemplated wherein a housing is provided, serving as a decorative cover to obscure the components of door closer 10. Other aspects, features and advantages will be apparent upon an examination of the attached drawings and appended claims.