This application is related to and claims priority to Japanese Patent Application No. 2016-243296, filed on Dec. 15, 2016 and Korean Patent Application No. 10-2017-0121639, filed on Sep. 21, 2017, the contents of which are incorporated herein by reference.
Embodiments of the present disclosure relate to a refrigerator, and more specifically, to a refrigerator including a cooler.
There is a refrigerator known to have a structure in which cold air generated in a cooler is blown by the blowing power of a fan into a space formed by a cooler front plate and a freezing compartment back plate, discharged from a hole provided in the freezing compartment back plate to each portion of the freezing compartment, and blown into a temperature adjustment device through a cold air passage. The amount of cold air blown into the refrigerator is controlled by the temperature adjustment device, a controlled amount of cold air is guided to a duct for distributing cold air, and cold air is divided into proper amounts in the duct for distribution and guided directly from a discharge port to a rear part of each portion of the refrigerating compartment (e.g., refer to Patent literature 1).
There is also a refrigerator known to have a structure in which a cold air passage extending in the vertical direction of the refrigerator is provided at the rear of a refrigerating compartment and freezing compartment. An evaporator which is a cooler, a freezing compartment blower, and a refrigerating compartment blower are disposed inside the cold air passage. In an upstream side of a cold air flow direction of the freezing compartment blower, air is cooled while passing through the evaporator to become cold air. Cold air passing through the cold air passage is discharged from the downstream side of the freezing compartment blower through a discharge port to the freezing compartment, and is discharged from the downstream side of the refrigerating compartment blower through a discharge port to the refrigerating compartment (e.g., refer to Patent literature 2).
[Patent literature 1] Japanese Patent Laid-Open Publication No. H4-36576
[Patent literature 2] Japanese Patent Laid-Open Publication No. 2016-50678
To address the above-discussed deficiencies, it is a primary object to provide that when a first storage compartment and a second storage compartment with different temperature ranges are cooled by a single cooler, in a structure wherein only the first storage compartment is cooled upon cooling of the first storage compartment and wherein the first storage compartment and the second storage compartment are cooled upon cooling of the second storage compartment, the environment of the first storage compartment may influence the second storage compartment because cold air of the first storage compartment flows into the second storage compartment during cooling of the second storage compartment.
An objective of the present disclosure is to reduce the possibility that the environment of the first storage compartment influences the second storage compartment when the first storage compartment and the second storage compartment have different temperature ranges and are cooled by a single cooler.
Therefore, it is an aspect of the present disclosure to provide a refrigerator that includes a compressor for compressing and circulating a refrigerant, a cooler provided to generate cold air through circulation of the refrigerant by the compressor, a first storage compartment having an internal temperature maintained within a first temperature range, a second storage compartment having an internal temperature maintained within a second temperature range different from the first temperature range, a first cold air passage for guiding cold air generated in the cooler to the first storage compartment, a second cold air passage for guiding cold air generated in the cooler to the second storage compartment, and a switching unit for guiding the cold air generated in the cooler to selectively flow into any one of the first cold air passage and the second cold air passage.
Here, the first cold air passage and the second cold air passage may share at least one side wall.
Further, the second cold air passage may be disposed at a position farther from the first storage compartment than the first cold air passage.
Further, the first temperature range may be lower than the second temperature range.
In this case, the refrigerator may further include an auxiliary switching unit which prevents cold air from flowing from the cooler room accommodating the cooler to the second storage compartment when cold air generated in the cooler is guided to the first cold air passage by the switching unit, and which guides cold air to flow from the second storage compartment to the cooler room when cold air generated in the cooler is guided to the second cold air passage by the switching unit.
Further, in this case, the refrigerator may further include a cooling fan for blowing cold air generated in the cooler, and the switching unit may guide cold air blown by the cooling fan to selectively flow into any one of the first cold air passage and the second cold air passage.
Further, the refrigerator may further include a processor which controls the switching unit such that cold air blown by the cooling fan flows into the first cold air passage, stops the compressor, operates the cooling fan, and then controls the switching unit such that cold air blown by the cooling fan flows into the second cold air passage.
In this case, the processor may control the switching unit such that cold air blown by the cooling fan flows into the second cold air passage when a temperature of the cooler reaches a predetermined temperature or a predetermined amount of time has elapsed.
In this case, the processor may control the switching unit such that cold air blown by the cooling fan flows into the second cold air passage, and then may operate the compressor again when a temperature inside the second storage compartment or a temperature of the cooler is equal to or higher than a predetermined temperature, or when an amount of time used for cooling the second storage compartment exceeds a predetermined amount of time.
Furthermore, the refrigerator further includes expansion valves having two or more different diameters, and the processor may change a flow rate of the refrigerant by switching to a diameter of any one of the two or more different diameters when the compressor is operated.
Further, in this case, the processor may control the switching unit such that cold air blown by the cooling fan flows into the second cold air passage, and then may stop the cooling fan when a temperature inside the second storage compartment or a temperature of the cooler is equal to or higher than a predetermined temperature, or when an amount of time used for cooling the second storage compartment exceeds a predetermined amount of time.
Furthermore, the processor may stop the cooling fan and restart the cooling fan when a temperature of the cooler reaches a predetermined temperature or when a predetermined amount time has elapsed.
Further, in this case, the processor may continue to operate the cooling fan even when a temperature inside the second storage compartment reaches a target temperature.
Furthermore, the processor may open a bypass path for directly guiding the refrigerant with high temperature compressed by the compressor to the cooler when the cooling fan is operated.
Furthermore, the processor may close a bypass path when a temperature inside the second storage compartment or a temperature of the cooler reaches a predetermined temperature.
Further, the refrigerator may include a processor for operating the cooling fan during a defrosting operation of the cooler, and controlling the switching unit such that cold air blown by the cooling fan flows into the second cold air passage.
In this case, the processor may stop the cooling fan when a temperature inside the second storage compartment or a temperature of the cooler reaches a predetermined temperature or when a predetermined amount of time has elapsed.
Further, the switching unit may include a first opening communicating with the first cold air passage, a second opening communicating with the second cold air passage, and at least one opening and closing plate for selectively opening and closing any one of the first opening and the second opening.
Here, the at least one opening and closing plate may include a first opening and closing plate for opening and closing the first opening, and a second opening and closing plate for opening and closing the second opening.
Further, the switching unit may further include a driving unit for driving the first opening and closing plate and the second opening and closing plate.
Before undertaking the DETAILED DESCRIPTION below, it may be advantageous to set forth definitions of certain words and phrases used throughout this patent document: the terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation; the term “or,” is inclusive, meaning and/or; the phrases “associated with” and “associated therewith,” as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like.
Moreover, various functions described below can be implemented or supported by one or more computer programs, each of which is formed from computer readable program code and embodied in a computer readable medium. The terms “application” and “program” refer to one or more computer programs, software components, sets of instructions, procedures, functions, objects, classes, instances, related data, or a portion thereof adapted for implementation in a suitable computer readable program code. The phrase “computer readable program code” includes any type of computer code, including source code, object code, and executable code. The phrase “computer readable medium” includes any type of medium capable of being accessed by a computer, such as read only memory (ROM), random access memory (RAM), a hard disk drive, a compact disc (CD), a digital video disc (DVD), or any other type of memory. A “non-transitory” computer readable medium excludes wired, wireless, optical, or other communication links that transport transitory electrical or other signals. A non-transitory computer readable medium includes media where data can be permanently stored and media where data can be stored and later overwritten, such as a rewritable optical disc or an erasable memory device.
Definitions for certain words and phrases are provided throughout this patent document, those of ordinary skill in the art should understand that in many, if not most instances, such definitions apply to prior, as well as future uses of such defined words and phrases.
For a more complete understanding of the present disclosure and its advantages, reference is now made to the following description taken in conjunction with the accompanying drawings, in which like reference numerals represent like parts:
According to an embodiment of the present disclosure, in a refrigerator in which a first storage compartment and a second storage compartment with different temperature ranges are cooled by a single cooler, the environment of the first storage compartment influencing the second storage compartment through cold air of the first storage compartment flowing into the second storage compartment is prevented. For example, when the first storage compartment is a freezing compartment and the second storage compartment is a refrigerating compartment, the humidity in the refrigerating compartment is prevented from decreasing by cold air of the freezing compartment flowing into the refrigerating compartment, and the humidity of the refrigerating compartment is maintained, at low cost, to be equal to or higher than the humidity in the refrigerating compartment of a refrigerator having two or more coolers at.
Specifically, the refrigerator has a duct structure for achieving cooling at an evaporation temperature suitable for each of the freezing compartment and refrigerating compartment. That is, a cold air passage for cooling only a freezing compartment and a cold air passage for cooling only a refrigerating compartment are separately provided in a single duct, and switching between these cold air passages for cooling is controlled by a single damper provided in the duct. Further, a cooling fan and a damper are controlled to optimize switching between cooling the freezing compartment and cooling the refrigerating compartment.
Further, the evaporation temperature is controlled by an expansion valve and a capillary tube. That is, humidity in the refrigerating compartment is controlled by optimizing the evaporation temperature during cooling the refrigerating compartment.
The partition 30 separates the freezing compartment 10 and the refrigerating compartment 20. The upper cold air passage 40 is a cold air passage provided on the upper portion of the partition 30 and the lower cold air passage 50 is a cold air passage provided on the lower portion of the partition 30, which will be described in detail below. The compressor 60 compresses a refrigerant and circulates the refrigerant in a refrigeration cycle.
The freezing compartment duct wall 13 is a wall installed in the freezing compartment duct. The damper 14 is an example of a switching means, is provided in the freezing compartment duct, and switches the flow path of cold air blown by the cooling fan 15, the details of which will be described below. The cooling fan 15 is a fan for blowing cold air generated by the cooler 16 into the refrigerator 1. The cooler 16 generates cold air for cooling the inside of the refrigerator 1 by evaporating the refrigerant.
Further, although not shown, when the refrigerating compartment duct cover 21 of
Further, as shown by arrows 102 in
Further, one side wall forming the passage for cooling a freezing compartment 131 and one side wall forming the passage for cooling a refrigerating compartment 132 are provided as a shared side wall 133.
Further, the passage for cooling a freezing compartment 131 and passage for cooling a refrigerating compartment 132 are individually formed by the partition 134.
Further, the freezing compartment duct wall 13 is provided with the damper 14 for switching between the passage for cooling a freezing compartment 131 and passage for cooling a refrigerating compartment 132, and with the cooling fan 15 for blowing cold air.
With this passage structure, a reduction in space can be achieved in comparison to a case where the passages of two systems are completely separated. Further, since the side wall is shared, leakage of cold air can be suppressed and material costs can be reduced.
Further, as described above, the passage for cooling a refrigerating compartment 132 is installed outside the passage for cooling a freezing compartment 131 (the side opposite to the freezing compartment duct cover 11). That is, the passage for cooling a freezing compartment 131 is provided near the freezing compartment 10, and the passage for cooling a refrigerating compartment 132 is provided on the side farther from the freezing compartment 10.
For example, as shown in
Although not shown, cold air may be blown to both the passage for cooling a freezing compartment 131 and passage for cooling a refrigerating compartment 132 by allowing any one of the opening for a passage for cooling a freezing compartment 141 and the opening for passage for cooling a refrigerating compartment 142 to be half-open.
Next, a description will be given of the flow of cold air during cooling the freezing compartment 10 and during cooling the refrigerating compartment 20.
In
In
Thereafter, in
Further, since one side wall of the passage for cooling a freezing compartment 131 and one side wall of the passage for cooling a refrigerating compartment 132 are provided as the shared side wall 133 (see
In
In
Thereafter, in
During cooling the refrigerating compartment 20, there is no inflow of cold air in a cooling temperature range of the freezing compartment 10, which is relatively low in temperature and low in humidity compared to the refrigerating compartment 20, and thus humidity in the refrigerating compartment 20 can be prevented from decreasing.
Further, since the passage for cooling a refrigerating compartment 132 is installed outside the passage for cooling a freezing compartment 131 (the side opposite to the freezing compartment duct cover 11), it is possible to prevent cold air in a temperature range higher than a cooling temperature of the freezing compartment 10, which passes through the passage for cooling a refrigerating compartment 132 during cooling the refrigerating compartment 20, from being directly transmitted to the freezing compartment duct cover 11, and thus an increase in temperature in the freezing compartment 10 can be suppressed, and energy can be saved.
Referring to
As described above, the upper cold air passage 40 is used as a passage for guiding cold air passed through the cooler 16 to the refrigerating compartment duct.
On the other hand, the lower cold air passage 50 is a passage used as a return passage for returning cold air used for cooling in the refrigerating compartment 20 to the cooler 16 installed in the freezing compartment 10.
A damper (not shown) is provided in the lower cold air passage 50 as an example of a second switching means, and the damper is opened during cooling the refrigerating compartment 20 to form a return passage. On the other hand, during cooling the freezing compartment 10, the damper is closed to prevent cold air from flowing between the freezing compartment 10 and the refrigerating compartment 20, and to prevent cold air having low temperature and low humidity in the freezing compartment 10 from flowing into the refrigerating compartment 20, and thereby a decrease in humidity in the refrigerating compartment 20 can be suppressed.
The refrigerator 1 further includes the damper 14, the cooling fan 15, the compressor 60, and a processor (not shown) for controlling opening and closing of the valves.
Hereinafter, an operation for controlling humidity so that the inside of the refrigerating compartment 20 has high humidity will be described.
As shown in the time chart 71 and time chart 72, since humidity in the refrigerating compartment 20 is lowered when cooling the refrigerating compartment 20 is cooled, that is, when the damper 14 allows the opening for a passage for cooling a refrigerating compartment 142 to be open toward the refrigerating compartment 20 side, a decrease in humidity needs to be suppressed when the refrigerating compartment 20 is cooled.
The decrease in humidity when the refrigerating compartment 20 is cooled is mainly caused by dehumidification due to a low temperature of the cooler 16, and thus the temperature of the cooler 16 needs to be raised when the refrigerating compartment 20 is cooled.
The time t1 of the time graph 73, the time t11 of the time graph 74, and the time t1 of the time graph 75 indicate a humidity control operation when the cooling of the refrigerating compartment 20 starts. That is, before a flow path is switched at the time t11 by the damper 14 shown in
During cooling the refrigerating compartment 20, the air inside the refrigerating compartment 20 circulates, and thus the temperature of the cooler 16 rises and the temperature inside the refrigerating compartment 20 may reach a temperature at which the refrigerating compartment 20 cannot be cooled. Accordingly, when the temperature inside the refrigerating compartment 20 or the temperature of the cooler 16 becomes equal to or higher than the predetermined temperature, that is, when a decreasing gradient of the temperature in the refrigerating compartment 20 becomes equal to or less than a predetermined gradient, the compressor 60 is restarted to prevent uncooling. Alternatively, when an amount of time required used for cooling the inside of the refrigerating compartment 20 is a predetermined amount of time or more, the compressor 60 may be restarted to prevent uncooling. In the time graph 73, the restart time of the compressor 60 is indicated by the time t12.
Further, in the same case, the cooling fan 15 may be stopped to prevent uncooling. In the time graph 75, the stop time of the cooling fan 15 is indicated by the time t13. Furthermore, in this case, the cooling fan 15 is operated again to raise the temperature of the cooler 16 at the time t14. Here, the time t14 may be determined by the temperature of the cooler 16 or may be determined by the amount of elapsed time after the cooling fan 15 stops. For example, when it is determined that the temperature of the cooler 16 has become equal to or higher than the predetermined temperature, or when it is determined that the predetermined time has elapsed since of the cooling fan 15 stopped, the cooling fan 15 is operated again.
Thereafter, when the temperature in the refrigerating compartment 20 reaches a target temperature at the time t2, cooling of the refrigerating compartment 20 is terminated and a refrigeration mode is changed to a stop mode. In this stop mode, the cooling fan 15 is continuously operated to raise the temperature of the cooler 16, as shown in the time graph 75. Accordingly, the temperature of the cooler 16 can be higher than 0° C., humidity in the refrigerating compartment 20 can be raised, and frost on the cooler 16 can be removed.
Further, although not shown in the time graph of
Further, when a value of a temperature sensor for detecting the temperature of the cooler 16 or the refrigerating compartment 20 reaches a predetermined value, or when a predetermined amount time has elapsed since the operation of the cooling fan 15 started, the temperature in the refrigerating compartment 20 can be prevented from exceeding the predetermined temperature by stopping the cooling fan 15.
That is, in this cooling cycle, an expansion mechanism having two or more different diameters is achieved by a variable expansion valve 63. As described above, when the compressor 60 is restarted during cooling the refrigerating compartment 20, the temperature of the cooler 16 is lowered, which causes a decrease in humidity in the refrigerating compartment 20. Therefore, a flow rate of the refrigerant is changed by the variable expansion valve 63 only when the refrigerating compartment 20 is cooled, such that cooling is performed while the cooler 16 is maintained at a high temperature, thereby suppressing a decrease in humidity in the refrigerating compartment 20.
Further, in this cooling cycle, as described above, a bypass path 65 is provided for directly sending a high temperature refrigerant compressed by the compressor 60 to the cooler 16. Here, switching the flow path of the refrigerant to the bypass path 65 is performed by the three-way switching valve 61. When cooling of the freezing compartment 10 and the refrigerating compartment 20 is completed, a high temperature refrigerant flows to the bypass path 65 through the three-way switching valve 61 and the cooling fan 15 is operated, and thereby the temperature of the cooler 16 can be higher than 0° C., the humidity in the refrigerating compartment 20 can be increased, and frost on the cooler 16 can be removed.
Further, when a temperature value of a temperature sensor for detecting the temperature of the cooler 16 or the refrigerating compartment 20 reaches a predetermined value, the bypass path 65 is closed to prevent the temperature in the refrigerating compartment 20 from being equal to or higher than the predetermined temperature.
According to the present embodiment, in a refrigerator in which a first storage compartment and a second storage compartment with different temperature ranges are cooled by one cooler, the environment of the first storage compartment is prevented, at low cost, from influencing the second storage compartment.
The refrigerator 1 according to the second embodiment of the present disclosure is the same as that described in the first embodiment except for the inside of the freezing compartment duct, and thus a description thereof will be omitted.
As indicated by arrows 801, 802, and 803 in
Further, as shown in
Further, the freezing compartment duct wall 83 is provided with a damper 84 as an example of a switching means for switching between the passage for cooling a freezing compartment 831 and passage for cooling a refrigerating compartment 832, and with a cooling fan 15 for blowing cold air.
Here, the damper 84 includes a driving unit 840, an opening for a passage for cooling a freezing compartment 841, an opening for a passage for cooling a refrigerating compartment 842, and opening and closing plates 843 and 844, and is configured such that the opening for the passage for cooling a freezing compartment 841 and the opening for the passage for cooling a refrigerating compartment 842 can be independently opened and closed.
For example, as shown in
Furthermore, the passage for cooling a freezing compartment 831 and passage for cooling a refrigerating compartment 832 are formed to be included in a single passage on the same plane by using the damper 84. As a result, it is possible to reduce the thickness of the entire freezing compartment duct in the second embodiment.
Further, even in such a structure, since the passage for cooling a freezing compartment 831 and passage for cooling a refrigerating compartment 832 are reliably separated by the partition 834, a high humidity effect equivalent to that of the first embodiment can be attained.
Further, the operation for controlling humidity so that the inside of the refrigerating compartment 20 has high humidity, as described with reference to
The refrigerator 1 according to the third embodiment of the present disclosure is the same as that described in the first embodiment except for the inside of the freezing compartment duct, and thus a description thereof will be omitted.
As indicated by arrows 901, 902, and 903 in
Further, as shown in
Further, the freezing compartment duct wall 93 is provided with a damper 94 as an example of a switching means for switching between the passage for cooling a freezing compartment 931 and passage for cooling a refrigerating compartment 932, and with a cooling fan 15 for blowing cold air.
Here, the damper 94 includes a driving unit 940, an opening for a passage for cooling a freezing compartment 941, an opening for a passage for cooling a refrigerating compartment 942, and an opening and closing plate 943, and the opening and closing plate 943 is installed to rotate within a fan-shaped range of about 90° around the driving unit 940.
For example, as shown in
Furthermore, the same effects as those of the second embodiment can be obtained, and a high humidity effect equivalent to that of the first embodiment can also be obtained by using the damper 94.
Further, the operation for controlling humidity so that the inside of the refrigerating compartment 20 has high humidity, as described with reference to
In the first to third embodiments, any one passage of two systems for blowing cold air to each of the freezing compartment and refrigerating compartment is selected by switching control of a damper, but the present disclosure is not limited thereto. When any one passage of two systems may be selected, for example, a one-way valve having an opening and closing mechanism or a solenoid-type opening and closing valve may be provided for each passage, and the same effects as those of the first to third embodiments can be obtained using this structure.
Alternatively, in the first to third embodiments, one cooling fan 15 is provided, and cold air blown by the cooling fan 15 is sent to any one passage of two systems toward the freezing compartment and refrigerating compartment by switching control of the damper, but the present disclosure is not limited thereto. Two cooling fans may be provided and cold air may be sent to any one passage of two systems toward the freezing compartment and refrigerating compartment by on/off control of the cooling fans. Specifically, a fan for the freezing compartment corresponding to a passage toward the freezing compartment and a fan for the refrigerating compartment corresponding to a passage toward the refrigerating compartment may be provided, and when cold air is sent to only the passage toward the freezing compartment, the fan for the freezing compartment is turned on while the fan for the refrigerating compartment is turned off, and when cold air is sent only to the passage toward the refrigerating compartment, the fan for the freezing compartment is turned off while the fan for the refrigerating compartment is turned on. Further, the fan for the freezing compartment and the fan for the refrigerating compartment in this case are examples of a switching means.
As is apparent from the above description, a refrigerator according to the present disclosure reduces the possibility that the environment of the first storage compartment influences the second storage compartment when the first storage compartment and the second storage compartment have different temperature ranges and are cooled by a single cooler.
Specific embodiments of the present disclosure have been illustrated and described above. However, the present disclosure is not limited to the aforementioned specific exemplary embodiments, and those skilled in the art may variously modify the disclosure without departing from the gist of the disclosure claimed by the appended claims within the scope of the claims.
Although the present disclosure has been described with an exemplary embodiment, various changes and modifications may be suggested to one skilled in the art. It is intended that the present disclosure encompass such changes and modifications as fall within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2016-243296 | Dec 2016 | JP | national |
10-2017-0121639 | Sep 2017 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
4336692 | Ecker | Jun 1982 | A |
5070707 | Ni | Dec 1991 | A |
5375428 | LeClear | Dec 1994 | A |
5675983 | Ibrahim | Oct 1997 | A |
5809790 | Kwon | Sep 1998 | A |
5881568 | Kim | Mar 1999 | A |
5904049 | Jaster | May 1999 | A |
5992165 | Kim | Nov 1999 | A |
6000095 | Johnson | Dec 1999 | A |
6330803 | Shin | Dec 2001 | B1 |
20050126207 | Lee et al. | Jun 2005 | A1 |
20060144063 | Oh | Jul 2006 | A1 |
20100107678 | Kim et al. | May 2010 | A1 |
20130042641 | Ryu et al. | Feb 2013 | A1 |
20130086928 | Cho et al. | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
H07110184 | Apr 1995 | JP |
2005030606 | Feb 2005 | JP |
2008039296 | Feb 2008 | JP |
100657556 | Dec 2006 | KR |
2008120907 | Oct 2008 | WO |
Entry |
---|
“HVAC Damper.” Lennox, www.lennox.com/buyers-guide/guide-to-hvac/glossary/damper. (Year: 2017). |
“A Stuck Damper Between the Refrigerator & Freezer.” Hunker, Hunker.com, Jul. 17, 2017, www.hunker.com/13409759/a-stuck-damper-between-the-refrigerator-freezer. (Year: 2017). |
Foreign Communication from Related Counterpart Application; PCT Patent Application No. PCT/KR20171013700; International Search Report dated Mar. 14, 2018; 3 pages. |
Supplementary European Search Report dated Oct. 15, 2019 in connection with European Patent Application No. 17 88 1965, 8 pages. |
Office Action dated Aug. 5, 2020 in connection with Chinese Patent Application No. 201780085972.7, 22 pages. |
Number | Date | Country | |
---|---|---|---|
20180172331 A1 | Jun 2018 | US |