Residential refrigerators generally include both fresh food compartments and freezer compartments, with the former maintained at a temperature above freezing to store fresh foods and liquids, and the latter maintained at a temperature below freezing for longer-term storage of frozen foods. For many years, most refrigerators have fallen in to one of two categories. Top mount refrigerators, for example, include a freezer compartment near the top of the refrigerator, either accessible via a separate external door from the external door for the fresh food compartment, or accessible via an internal door within the fresh food compartment. Side-by-side refrigerators, on the other hand, orient the freezer and fresh food compartments next to one another and extending generally along most of the height of the refrigerator.
Door-mounted ice dispensers (which are often combined with water dispensers) are common convenience features on many of these residential refrigerators. Incorporating these features into top mount and side-by-side refrigerators has generally been straightforward because it is generally possible to mount such dispensers on the external door for the freezer compartment at a convenient height for a user, as well as at a location suitable for receiving ice produced by an ice maker mounted in the freezer compartment.
More recently, however, various types of bottom mount refrigerator designs have become more popular with consumers. Bottom mount refrigerators orient the freezer compartment below the fresh food compartment and near the bottom of the refrigerator. For most people, the fresh food compartment is accessed more frequently than the freezer compartment, so many of the items that a user accesses on a daily basis are accessible at a convenient height for the user. Some bottom mount refrigerators include a single door for each of the fresh food and freezer compartments, while other designs commonly referred to as “French door” refrigerators include a pair of side-by-side doors for the fresh food compartment. Some designs may also utilize sliding doors instead of hinged doors for the freezer compartment, and in some designs, multiple doors may be used for the freezer compartment.
Placing the freezer compartment at the bottom of a refrigerator, however, complicates the design of door-mounted ice dispensers, since every freezer compartment door is generally located too low for a door-mounted ice dispenser, and since placement of an ice dispenser on a fresh food compartment door orients the ice dispenser opposite the above-freezing fresh food compartment. Most ice dispensers rely at least in part on gravity to convey ice from an ice maker mold to a storage receptacle and/or to convey ice from the storage receptacle to an exit chute for the ice dispenser, so it is generally desirable to orient the ice maker at a higher elevation than the ice dispenser.
Moreover, while bottom mount refrigerators generally provide a relatively large fresh food compartment that extends the full width of the refrigerator, access to some food items maintained by shelves and/or bins may be difficult, particularly when many food items are stored in the refrigerator.
Accordingly, a need continues to exist in the art for an improved manner of providing externally-accessible ice dispensing, particularly within a bottom mount refrigerator, as well as of providing convenient access to food items stored in a refrigerator.
The herein-described embodiments address these and other problems associated with the art by providing in one aspect a refrigerator that utilizes an icemaker having a tandem arrangement of storage bins. A first storage bin receives ice produced by an icemaker and includes a reversible ice mover that when operated in a first direction feeds an ice dispenser, and when operated in a second direction feeds a second storage bin disposed below the first storage bin. In addition, the herein-described embodiments address these and other problems associated with the art by providing in another aspect a refrigerator that includes an externally-accessible ice dispenser having a dispenser recess portion that is removable from the refrigerator when the doors of the refrigerator are closed, e.g., for the purpose of accessing an ice storage bin.
Therefore, consistent with one aspect of the invention, a refrigerator may include a cabinet, an icemaker disposed within the cabinet, a first storage bin disposed below the icemaker and configured to receive ice produced by the icemaker, a reversible ice mover disposed within the first storage bin and operable to move ice in first and second directions within the first storage bin, an ice dispenser configured to dispense ice disposed in the first storage bin, the ice dispenser configured to receive ice moved in the first direction by the reversible ice mover, and a second storage bin disposed below the first storage bin and configured to receive ice disposed in the first storage bin and moved in the second direction by the reversible ice mover.
In some embodiments, the reversible ice mover includes an auger or a conveyor. Also, in some embodiments, the first storage bin includes an aperture disposed proximate an opposite end of the first storage bin from the ice dispenser such that ice moved in the second direction by the reversible ice mover falls into the second storage bin through the aperture. Further, in some embodiments, the aperture is disposed in a bottom wall, a side wall, or an end wall of the first storage bin.
In some embodiments, the icemaker extends generally from front to back within the cabinet, where the ice dispenser is disposed on a front of the refrigerator, where the reversible ice mover moves ice in a generally forward direction when moving ice to the ice dispenser, and where the reversible ice mover moves ice in a generally rearward direction when moving ice to the second storage bin.
In addition, in some embodiments, the first and second storage bins are removable. In some embodiments, the second storage bin includes an ice bucket disposed within the second storage bin and removable therefrom. In addition, in some embodiments, the ice bucket includes at least one handle. Moreover, in some embodiments, the first and second storage bins are slidably removable. Some embodiments may also include at least one stop configured to restrict removal of the first storage bin beyond a stop position, and the first storage bin is configured to provide access to the icemaker and the reversible ice mover to clear an obstruction.
Some embodiments may further include a controller coupled to the reversible ice mover and a level sensor configured to sense a level of ice within the first storage bin, where the icemaker is positioned to drop ice into an intermediate area of the first storage bin, and where the controller is configured to, upon detecting a not full condition in the first storage bin with the level sensor, operate the reversible ice mover to move ice dropped into the intermediate area of the first storage bin in the first direction toward the ice dispenser, and upon detecting a full condition in the first storage bin with the level sensor, operate the reversible ice mover to move ice in the first storage bin in the second direction and into the second storage bin. Some embodiments may also include a second level sensor configured to sense a level of ice within the second storage bin, where the controller is further configured to inhibit a release of ice by the icemaker upon detecting a full condition in the first and second storage bins with the first and second level sensors.
In addition, some embodiments may also include a freezer compartment disposed in the cabinet, a fresh food compartment disposed in the cabinet above the freezer compartment and having a top wall, a bottom wall, and first and second side walls, the bottom wall separating the fresh food compartment from the freezer compartment, and an icemaking console extending upwardly from the bottom wall of the fresh food compartment only a portion of a height of the fresh food compartment and spaced apart from each of the top wall, the first side wall, and the second side wall, the icemaking console including one or more walls that insulate an interior compartment of the icemaking console from the fresh food compartment, where the icemaker, the first storage bin, the second storage bin, and the reversible ice mover are disposed within icemaking console.
In some embodiments, the ice dispenser is disposed on a front surface of the icemaking console. Moreover, in some embodiments, a first portion of the ice dispenser is disposed on a front surface of the first storage bin and a second portion of the ice dispenser is disposed on a front surface of the second storage bin. In addition, some embodiments may further include a dispenser control disposed on the front surface of the second storage bin. Some embodiments may also include a dispenser shut off circuit configured to deactivate the ice dispenser in response to movement of the second storage bin away from an operating position. In addition, some embodiments may also include a controller and a user control that activates the ice dispenser, where the dispenser shut off circuit includes at least one switch that disconnects the user control from the controller when the second storage bin is moved away from the operating position. Also, in some embodiments, the switch is a contact switch or a magnetic switch.
Consistent with another aspect of the invention, a refrigerator may include a cabinet including one or more food compartments, one or more doors coupled to the cabinet and configured to provide access to the one or more food compartments, an icemaker disposed within the cabinet, an externally-accessible ice dispenser configured to dispense ice produced by the icemaker when the one or more doors are closed, where the externally-accessible ice dispenser includes a dispenser recess portion configured to receive a container to which ice may be dispensed, and where the dispenser recess portion is removably mounted within the cabinet for removal from the cabinet when the one or more doors are closed.
Moreover, in some embodiments, the dispenser recess portion is slidably mounted within the cabinet. Some embodiments may further include an externally-accessible water dispenser coupled to a water supply and positioned to dispense water from the water supply through an outlet and into a container positioned below the outlet when the one or more doors are closed. Also, in some embodiments, the outlet of the externally-accessible water dispenser is fixedly mounted to the cabinet such that the outlet of the externally-accessible water dispenser remains in a fixed location on the cabinet when the dispenser recess portion is removed from the cabinet.
Further, in some embodiments, the externally-accessible water dispenser includes a user control configured to actuate the externally-accessible water dispenser. In some embodiments, the user control of the externally-accessible water dispenser is removably mounted within the cabinet. Also, in some embodiments, the externally-accessible ice dispenser includes a user control configured to actuate the externally-accessible ice dispenser. In some embodiments, the user control of the externally-accessible ice dispenser is mounted to the dispenser recess portion and is removable from the cabinet with the dispenser recess portion. Further, in some embodiments, the user control includes a paddle.
Some embodiments may also include a dispenser shut off circuit configured to deactivate the externally-accessible ice dispenser in response to removal of the dispenser recess portion from the cabinet. Some embodiments may further include a controller, where the dispenser shut off circuit includes at least one contact switch that disconnects the user control from the controller when the dispenser recess portion is removed from the cabinet.
In addition, some embodiments may further include a storage bin disposed below the icemaker and configured to receive ice produced by the icemaker, where the dispenser recess portion is coupled to the storage bin such that removal of the dispenser recess portion from the cabinet additionally removes the storage bin from the cabinet. In addition, in some embodiments, the storage bin is a second storage bin, and the refrigerator further includes a first storage bin disposed above the second storage bin and below the icemaker to receive ice produced by the icemaker, an ice chute disposed above the dispenser recess portion, and an ice mover disposed within the first storage bin and operable to move ice in the first storage bin to the ice chute when dispensing ice.
In some embodiments, the ice mover is reversible and operable to move ice in first and second directions within the first storage bin, where movement of the ice mover in the first direction moves ice to the ice chute and movement of the ice mover in the second direction drops ice from the first storage bin and into the second storage bin. In addition, in some embodiments, the first storage bin is slidably mounted within the cabinet for withdrawal from the cabinet when the one or more doors are closed.
Also, in some embodiments, the one or more food compartments includes a freezer compartment and a fresh food compartment, where the fresh food compartment is disposed in the cabinet above the freezer compartment and has a top wall, a bottom wall, and first and second side walls, where the bottom wall separates the fresh food compartment from the freezer compartment, where the refrigerator further includes an icemaking console extending upwardly from the bottom wall of the fresh food compartment only a portion of a height of the fresh food compartment and spaced apart from each of the top wall, the first side wall, and the second side wall, where the icemaking console includes one or more walls that insulate an interior compartment of the icemaking console from the fresh food compartment, and where the icemaker, the externally-accessible ice dispenser, and the dispenser recess portion are disposed within the icemaking console.
These and other advantages and features, which characterize the invention, are set forth in the claims annexed hereto and forming a further part hereof. However, for a better understanding of the invention, and of the advantages and objectives attained through its use, reference should be made to the Drawings, and to the accompanying descriptive matter, in which there is described example embodiments of the invention. This summary is merely provided to introduce a selection of concepts that are further described below in the detailed description, and is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
Turning now to the drawings, wherein like numbers denote like parts throughout the several views,
Fresh food compartment 14 is generally maintained at a temperature above freezing for storing fresh food such as produce, drinks, eggs, condiments, lunchmeat, cheese, etc. Various shelves, drawers, and/or sub-compartments may be provided within fresh food compartment 14 for organizing foods, and it will be appreciated that some refrigerator designs may incorporate multiple fresh food compartments and/or zones that are maintained at different temperatures and/or at different humidity levels to optimize environmental conditions for different types of foods. Freezer compartment 16 is generally maintained at a temperature below freezing for longer-term storage of frozen foods, and may also include various shelves, drawers, and/or sub-compartments for organizing foods therein.
Refrigerator 10 as illustrated in
Refrigerator 10 also includes a cabinet-mounted dispenser 26 for dispensing ice and/or water. In the illustrated embodiments, dispenser 26 is an ice and water dispenser capable of dispensing both ice and chilled water, while in other embodiments, dispenser 26 may be an ice only dispenser for dispensing only cubed and/or crushed ice. In still other embodiments, dispenser 26 may additionally dispense hot water, coffee, beverages, or other liquids, and may have variable and/or fast dispense capabilities. In some instances, ice and water may be dispensed from the same location, while in other instances separate locations may be provided in the dispenser for dispensing ice and water.
A refrigerator consistent with the invention also generally includes one or more controllers configured to control a refrigeration system as well as manage interaction with a user.
As shown in
Controller 40 may also be interfaced with various sensors 56 located to sense environmental conditions inside of and/or external to refrigerator 10, e.g., one or more temperature sensors, humidity sensors, etc. Such sensors may be internal or external to refrigerator 10, and may be coupled wirelessly to controller 40 in some embodiments. Sensors 56 may also include additional types of sensors such as door switches, switches that sense when a portion of an ice dispenser has been removed, and other status sensors, as will become more apparent below.
In some embodiments, controller 40 may also be coupled to one or more network interfaces 58, e.g., for interfacing with external devices via wired and/or wireless networks such as Ethernet, Wi-Fi, Bluetooth, NFC, cellular and other suitable networks, collectively represented in
In some embodiments, refrigerator 10 may be interfaced with one or more user devices 62 over network 60, e.g., computers, tablets, smart phones, wearable devices, etc., and through which refrigerator 10 may be controlled and/or refrigerator 10 may provide user feedback.
In some embodiments, controller 40 may operate under the control of an operating system and may execute or otherwise rely upon various computer software applications, components, programs, objects, modules, data structures, etc. In addition, controller 40 may also incorporate hardware logic to implement some or all of the functionality disclosed herein. Further, in some embodiments, the sequences of operations performed by controller 40 to implement the embodiments disclosed herein may be implemented using program code including one or more instructions that are resident at various times in various memory and storage devices, and that, when read and executed by one or more hardware-based processors, perform the operations embodying desired functionality. Moreover, in some embodiments, such program code may be distributed as a program product in a variety of forms, and that the invention applies equally regardless of the particular type of computer readable media used to actually carry out the distribution, including, for example, non-transitory computer readable storage media. In addition, it will be appreciated that the various operations described herein may be combined, split, reordered, reversed, varied, omitted, parallelized and/or supplemented with other techniques known in the art, and therefore, the invention is not limited to the particular sequences of operations described herein.
Numerous variations and modifications to the refrigerator illustrated in
Now turning to
Console 70 may extend in some instances to a back wall 96 of fresh food compartment 14, while in other instances, and as shown in
Moreover, the walls 82, 84, 86 and 88 of console 70 may be insulated (e.g., via foam or another suitable insulator) such that console 70 is an insulated console and such that an interior compartment of console 70 is maintained at a below-freezing temperature for the purposes of making and storing ice. In the illustrated embodiment, console 70 is in fluid communication with freezer compartment 16 through an opening 100 formed in bottom wall 72 of fresh food compartment 14, such that while console 70 is physically disposed within the boundary of fresh food compartment 14, the interior of console 70 is insulated from the fresh food compartment and in fluid communication with freezer compartment 16, thus effectively operating as an extension of freezer compartment 16. In other embodiments, console 70 may be separate from freezer compartment 16, e.g., insulated from freezer compartment 16 and including a separate cooling system, e.g., a thermoelectric cooling system, or separated from freezer compartment 16 but fluidly coupled via ducts or vents to receive cool air circulated by the freezer compartment cooling system.
Further, it will be appreciated that console 70 is formed separate from the shell or liner used to form the fresh food and/or freezer compartments. In other embodiments, however, console 70 may be formed integrally with the shell or liner of a fresh food and/or freezer compartment.
Console 70 in some embodiments may also provide a convenient location for a control panel 102 suitable for controlling various functions of refrigerator 10. For example, control panel 102 may include displays, buttons, sliders, switches, etc., and may be used to perform various control operations such as setting temperature setpoints, controlling ice and/or water functions, displaying alarms or alerts, etc. As shown in the illustrated embodiment, top wall 84 of console 70 may be bi-level to accommodate control panel 102, although in other embodiments, no control panel may be used, and top wall 84 may be at a substantially consistent elevation along its depth.
Console 70 in some instances may be an icemaking console insofar as the console is used to make, dispense and/or store ice. As will become more apparent below, however, console 70 may not be an icemaking console in some embodiments. In some embodiments, however, console 70 may be configured to receive one or more drawers or storage bins, e.g., upper and lower ice storage bins 104, 106. Upper ice storage bin 104 includes a front face 108 that insulates console 70 from the external environment when the bin is pushed into the console and forms a front surface of the upper ice storage bin, while lower ice storage bin 106 includes a front face 110 that similarly insulates console 70 from the external environment when the bin is pushed into the console and forms a front surface of the lower ice storage bin. Front faces 108, 110 also house at least a portion of an externally-accessible ice and water dispenser, discussed in greater detail below. In some embodiments, a single front face may be used, whereby the upper and lower ice storage bins may be coupled to the same front face.
Beyond ice-related functions, however, console 70 also provides a number of structural features associated with the storage of food items within fresh food compartment 14. For example, as illustrated in
Storage elements 112 and 118, for example, are sliding shelves, while storage elements 114, 116, 120 and 122 are sliding storage bins or drawers. It will also be appreciated that storage bins or drawers may be configured with customizable environmental conditions (e.g., different temperatures, humidity levels, etc.) suitable for storing food items such as meats, cheeses, vegetables, fruits, etc. Further, not all of storage elements 114-122 need be configured as sliding storage elements, and moreover, different numbers and types of storage elements may be used for any of the storage elements illustrated in
Moreover, despite the fact that storage elements 112-122 are disposed within a full width fresh food compartment 14, console 70 provides greater support for these storage elements, so much so that in some embodiments it may be desirable to utilize full extension slide rails (e.g., slide rails 124, 126 for storage element 120) to support a sliding storage element, permitting the sliding storage element to be fully extended outwardly from the fresh food compartment, thereby providing greater access to the rear portion of the interior of a storage bin, drawer or basket, or to the rear portion of a shelf or rack. A full extension slide rail, in this regard, is configured to extend at least substantially the full depth of a sliding storage element, including overextension beyond the full depth of the sliding storage element in some embodiments.
Likewise, and with further reference to
In the illustrated embodiment, in contrast, top wall 84 of console 70 may provide adequate support for full width shelf 128 to enable a full width shelf to substantially span the entire width of fresh food compartment 14. In one embodiment illustrated in
Other manners of supporting full width shelf 128 may be used in other embodiments, including various combinations of undermount, top mount or side mount slide rails, glides (i.e., low friction tracks or surfaces), etc.
As noted above, in the illustrated embodiment of
As shown in
As shown in
As shown in
Other variations will be appreciated by those of ordinary skill in the art having the benefit of the instant disclosure. Therefore, the invention is not limited to the particular console designs described herein.
Now turning to
Upper ice storage bin 104 also includes a reversible ice mover 224. Ice mover 224 may be driven by a motor 226 or other drive, which in the illustrated embodiment is external to upper ice storage bin 104 and removably and mechanically coupled to ice mover 224 to drive ice mover 224 in two opposing directions when upper ice storage bin 104 is in an operating position, but to separate from the upper ice storage bin when the upper ice storage bin is slid outwardly from console 70. In other embodiments, an ice mover drive may be incorporated into upper ice storage bin 104 itself, and may be removable from refrigerator 10 along with the upper ice storage bin.
Ice mover 224 in the illustrated embodiment may be configured as an auger. In other embodiments, however, ice mover 224 may be configured as a conveyor, a paddle, or other suitable component. Moreover, while no ice crusher is specifically illustrated in the figures, it will be appreciated that various types of ice crusher configurations may be used, and may provide selective crushing of ice dispensed by the icemaking system.
As noted above, ice mover 224 is reversible, and in this regard, may be actuated to push ice disposed in upper ice storage bin 104 in two opposing directions. In a first, forward direction, ice mover 224 pushes ice towards an ice dispenser 228, which in the illustrated embodiment includes portions disposed on each of the front faces 108, 110 of upper and lower ice storage bins 104, 106. Specifically, ice mover 224 may be configured to push ice towards the front of refrigerator 10, and towards an ice chute 230 disposed in front face 108 of the upper ice storage bin. Doing so causes ice (cubed or crushed) to fall through the ice chute and into a container positioned within a dispenser recess portion 232 defined on front face 110 of lower ice storage bin 106. In some embodiments, a flap 234 or other closure may also be provided proximate ice chute 230 to provide some insulation for the ice chute and reduce heat loss from icemaking console 70.
In a second, rearward direction, ice mover 224 pushes ice away from ice dispenser 228, and towards a rearwardly-disposed aperture 236 formed in upper ice storage bin at an opposite end from ice dispenser 228 such that ice pushed into aperture 236 drops into lower ice storage bin 106 positioned below upper ice storage bin 104. While aperture 236 is illustrated as being formed in a bottom wall of upper ice storage bin 104, aperture 236 may alternatively be disposed elsewhere, e.g., on an end or side wall of upper ice storage bin 104. Moreover, while aperture 236 is illustrated as being always open, in other embodiments a movable closure element such as a hinged or sliding trap door may be used, e.g., so that aperture 236 is closed when upper ice storage bin 104 is removed from icemaking console 70. For example, in some embodiments aperture may be normally closed but opened when ice mover 224 is pushing ice in the second, rearward direction.
Lower ice storage bin 106 in the embodiment illustrated in
Returning to
In one example embodiment, for example, lower ice storage bin 106 may be used as a primary ice storage bin from which a user may obtain ice when a large quantity of ice is needed by the user. The lower ice storage bin 106 may lack a stop and thus may be easily removed from icemaking console 70, even when doors 18, 20, 22 and 24 are all closed. Upper ice storage bin 104, in contrast, may be primarily used to hold ice for dispensing purposes, and thus may not be frequently removed from icemaking console 70 by a user. The upper ice storage bin, however, also provides access to ice mover 224 and icemaker 220, and thus in the event of an obstruction or other issue that may inhibit the production, dispensing and/or storage of ice, the upper ice storage bin may be removed to enable a user to clear any obstructions. In this regard, upper ice storage bin 104 may include stop 244 such that it is not fully removed by a user in most circumstances, yet is still fully removable through actuation of stop 244, e.g., for use by service personnel or when wider access to the upper area of the icemaking console is needed or desired.
Each of upper and lower ice storage bins 104, 106 may be configured to be slidably removed from icemaking console 70, either with or without the use of slide rails or other tracking guides. In the embodiment of
In addition, as discussed above, housing 98 in some embodiments provides additional space within fresh food compartment, e.g., for a fresh food, freezer, or other evaporator, a fan, a compressor, or other cooling system component, for control electronics, or for other purposes. The interior of housing 98 may insulated from fresh food compartment in some embodiments, or may be in fluid communication with the fresh food compartment via vents. In other embodiments, housing 98 may be omitted, and console 70 may extend all of the way to back wall 96. In some embodiments, and as shown in dashed lines in
Turning now with particular reference to
In addition to ice dispenser 228, refrigerator 10 also includes a water dispenser 258 disposed on icemaking console 70. Water dispenser 258, as with ice dispenser 228, is externally-accessible when doors 18, 20, 22, and 24 are closed. Unlike ice dispenser 228, however, water dispenser 258 is disposed at a fixed location in icemaking console 70, e.g., on a cantilevered extension 260 having a profile that conforms with front face 108 of upper ice storage bin 104. Water dispenser 258 includes an outlet 262 coupled to a supply line 264, and further includes a valve (not shown) that controls the supply of water to outlet 262. A water dispenser control 266, e.g., a paddle or button, may be disposed underneath outlet 262, e.g., on front face 108 of upper ice storage bin 104, may be used to selectively actuate water dispenser 258 either through pressing by a user's finger or by pressing the edge of a container against the control.
By providing at least the water supply and outlet of water dispenser 258 on a fixed component of refrigerator 10, no detachable couplings or flexible hoses are needed in order to support movement of the water dispenser relative to icemaking console 70. In addition, since at least outlet 262 of water dispenser 258 is separate from ice dispenser 228, ice storage bins 104, 106 are readily removable without concern for the water supply to water dispenser 258.
It will be appreciated, however, that other dispenser configurations may be used in other embodiments. In some embodiments, for example, ice and water may be dispensed from the same dispenser recess portion, and in some instances using the same control (e.g., where a separate dispenser mode switch is used to select between ice, water, and in some instances, crushed ice). Further, different dispenser controls may be used in other embodiments, e.g., various combinations of buttons, paddles, proximity sensors, mode switches, etc. In addition, in other embodiments the various components of the ice and/or water dispensers may be disposed on removable or fixed components in refrigerator 10. Therefore, the invention is not limited to the particular configuration disclosed herein.
In addition, given that controls 256, 266 are disposed on removable components (upper and lower ice storage bins 104, 106), it may be desirable in some embodiments to include a dispenser shut off circuit for one or both of the ice dispenser 228 and water dispenser 258 in response to movement of either of upper and lower ice storage bins 104, 106 away from an operating position. In some embodiments, for example, a dispenser shut off circuit may include one or more switches (e.g., contact switches, magnetic switches, etc.) that disconnect controls 256, 266 from controller 40 when an upper and/or lower ice storage bin 104, 106 is moved away from the operating position.
As shown in
Controller 40 may be configured to deactivate ice and/or water dispenser 228, 258 whenever one or both of upper and lower ice storage bins 104, 106 have been pulled away from icemaking console 70. For example, it may be desirable in some instances to disable both dispensers in response to either ice storage bin 104, 106 being out of an operating position.
In some embodiments, control signals generated by controls 256, 266 may be passed through contact switches 270, 274 and contact pads 272, 276. In other embodiments, separate electrical contacts or wiring may be used to communicate control signals. In addition, while contact switches are illustrated as being located on surfaces that are generally transverse to the sliding axes of ice storage bins 104, 106, in other embodiments the contact switches may be disposed on surfaces that are generally parallel to the sliding axes, or in other locations suitable for detecting the presence of an ice storage bin in an operating position. Moreover, while electrical contact switches are illustrated in
Control of ice production with icemaker 220 may be based in part on the sensed level of ice in each of upper and lower ice storage bins 104, 106. In some embodiments, for example, an upper level sensor 280 and a lower level sensor 282 may be configured to sense the level of ice within each of upper and lower ice storage bins 104, 106. Level sensors 280, 282 may be configured as optical or photoelectric sensors, although other sensors may be used in other embodiments, e.g., weight sensors, or sensor arrays capable of sensing ice level at multiple locations in each ice storage bin.
As shown in
Once the ice production process is complete and the icemaker is ready to release the ice, block 304 passes control to block 308 to determine (e.g., from sensor 280) whether the upper storage bin is full. If not, control passes to block 310 to operate ice mover 224 in the forward direction a predetermined amount to push ice forward towards dispenser 228. By pushing ice forward, the ice may be positioned proximate dispenser 228 to reduce the amount of time ice mover 224 needs to be actuated before ice is dispensed to a user. Control then passes to block 312 to release the ice, thereby dropping the ice into the upper ice storage bin 104. Control then returns to block 302 to initiate another ice production operation.
Returning to block 308, if the upper storage bin is determined to be full, block 308 instead passes control to block 314 to determine (e.g., using sensor 282) whether the lower ice storage bin is full. If so, control returns to block 304 to wait until the upper storage bin is no longer full (e.g., after a user has dispensed some ice using the ice dispenser), such that the produced ice is retained in the icemaker, and no additional ice is produced, until sufficient room exists in the upper ice storage bin.
Returning to block 314, if the lower storage bin is determined to not be full, block 314 passes control to block 316 to operate ice mover 224 in the opposite, rearward direction a predetermined amount to push ice rearward so that at least some of the ice will drop into lower ice storage bin 106. Block 318 then determines if the upper storage bin is still full, and if so, returns control to block 316 to continue pushing ice rearward and thus from the upper ice storage bin to the lower ice storage bin. Once the upper ice storage bin is no longer full, block 318 then passes control to block 312 to release the ice, and then to block 302 to initiate another ice production operation.
Other manners of managing ice production will be apparent to those of ordinary skill having the benefit of the instant disclosure, so the invention is not limited to the particular ice production management disclosed herein.
It will be appreciated that various additional modifications may be made to the embodiments discussed herein, and that a number of the concepts disclosed herein may be used in combination with one another or may be used separately. For example, an icemaking console consistent with the invention may be used in connection with other icemaking systems in other embodiments, and conversely, an icemaking system consistent with the invention may be used in other refrigerator designs, including those without an icemaking console and/or those in which an icemaking system is at least partially disposed elsewhere in a fresh food compartment, a freezer compartment, or door of a refrigerator. Furthermore, an icemaking system consistent with the invention may incorporate tandem ice storage bins without a removable dispenser recess portion in some embodiments, or alternatively, a removable dispenser recess portion without tandem ice storage bins. Therefore, the invention lies in the claims hereinafter appended.
Number | Name | Date | Kind |
---|---|---|---|
37978 | Regan | Mar 1863 | A |
1868763 | Raymond | Jul 1932 | A |
2369539 | Delamere | Feb 1945 | A |
2504622 | Band | Apr 1950 | A |
2869714 | Williams | Jan 1959 | A |
2914218 | Korodi | Nov 1959 | A |
3146601 | Gould | Sep 1964 | A |
3187958 | Swart | Jun 1965 | A |
3218111 | Steiner | Nov 1965 | A |
3351233 | Chanoch et al. | Nov 1967 | A |
3485058 | Nagel | Dec 1969 | A |
3549000 | Christian et al. | Dec 1970 | A |
3580389 | Nonnenmacher | May 1971 | A |
3602007 | Drieci | Aug 1971 | A |
3640433 | Rodth | Feb 1972 | A |
3643464 | Hilliker et al. | Feb 1972 | A |
3744270 | Wilcox | Jul 1973 | A |
3777000 | Ernst et al. | Dec 1973 | A |
3785512 | Gatz et al. | Jan 1974 | A |
3798923 | Pink et al. | Mar 1974 | A |
3809295 | Vitencz | May 1974 | A |
3858765 | Landers | Jan 1975 | A |
3874559 | Pink | Apr 1975 | A |
3911692 | Maxwell et al. | Oct 1975 | A |
4055280 | Kohl | Oct 1977 | A |
4078653 | Suter | Mar 1978 | A |
4084725 | Buchser | Apr 1978 | A |
4104889 | Hoenish | Aug 1978 | A |
4129015 | Morris, Jr. | Dec 1978 | A |
4168805 | Taylor | Sep 1979 | A |
4176527 | Linstromberg et al. | Dec 1979 | A |
4184625 | Stollberg et al. | Jan 1980 | A |
4189063 | Matthiesen | Feb 1980 | A |
4227383 | Horway | Oct 1980 | A |
4285212 | Prada | Aug 1981 | A |
4306757 | Horway et al. | Dec 1981 | A |
4333612 | Hayashi | Jun 1982 | A |
4386640 | Carr | Jun 1983 | A |
4420948 | Savage | Dec 1983 | A |
4641763 | Landers | Feb 1987 | A |
4790146 | Mun et al. | Dec 1988 | A |
4804111 | Ricciardi et al. | Feb 1989 | A |
4856682 | Miller | Aug 1989 | A |
4869076 | Sakai | Sep 1989 | A |
4942983 | Bradbury | Jul 1990 | A |
4969583 | Torimitsu | Nov 1990 | A |
4972999 | Grace | Nov 1990 | A |
5050777 | Buchser | Sep 1991 | A |
5056688 | Goetz | Oct 1991 | A |
5149551 | Anderson | Sep 1992 | A |
5219103 | Carper | Jun 1993 | A |
5299427 | Miller | Apr 1994 | A |
5560221 | Snelling | Oct 1996 | A |
5947342 | Song | Sep 1999 | A |
6010037 | Thompson | Jan 2000 | A |
6019447 | Jackovin | Feb 2000 | A |
6438976 | Shapiro et al. | Aug 2002 | B2 |
6442954 | Shapiro | Sep 2002 | B1 |
6574984 | McCrea et al. | Jun 2003 | B1 |
6860408 | Hawkes | Mar 2005 | B2 |
6904765 | Lee | Jun 2005 | B2 |
7137582 | Mikkelsen et al. | Nov 2006 | B1 |
7188479 | Anselmino et al. | Mar 2007 | B2 |
7228702 | Maglinger et al. | Jun 2007 | B2 |
7284390 | Van Meter et al. | Oct 2007 | B2 |
7318633 | Shin et al. | Jan 2008 | B2 |
7337620 | Coulter et al. | Mar 2008 | B2 |
7343757 | Egan et al. | Mar 2008 | B2 |
7386992 | Adamski et al. | Jun 2008 | B2 |
7455085 | Voglewede et al. | Nov 2008 | B2 |
7475562 | Jackovin | Jan 2009 | B2 |
7493774 | Ferragut, II et al. | Feb 2009 | B2 |
7591399 | Hortin et al. | Sep 2009 | B2 |
7658212 | Meuleners et al. | Feb 2010 | B2 |
7673471 | Egan et al. | Mar 2010 | B2 |
7707847 | Davis et al. | May 2010 | B2 |
7712321 | Kadyk | May 2010 | B2 |
7762097 | Jeong et al. | Jul 2010 | B2 |
7836719 | Jeong et al. | Nov 2010 | B2 |
7997452 | Kim et al. | Aug 2011 | B2 |
8001796 | Kim et al. | Aug 2011 | B2 |
8006502 | Kim et al. | Aug 2011 | B2 |
8191378 | Park | Jun 2012 | B2 |
8191379 | Wuesthoff et al. | Jun 2012 | B2 |
8196618 | Kim et al. | Jun 2012 | B2 |
8201715 | Park et al. | Jun 2012 | B2 |
8240519 | Buchstab et al. | Aug 2012 | B2 |
8312735 | Fulton | Nov 2012 | B2 |
8336330 | Lee et al. | Dec 2012 | B2 |
8353177 | Adamski et al. | Jan 2013 | B2 |
8454103 | Jeon et al. | Jun 2013 | B2 |
8499577 | Watson et al. | Aug 2013 | B2 |
8516845 | Wuesthoff et al. | Aug 2013 | B2 |
8459055 | Kim et al. | Nov 2013 | B2 |
8596085 | Koo et al. | Dec 2013 | B2 |
8616019 | Van Meter et al. | Dec 2013 | B2 |
8656731 | Kim | Feb 2014 | B2 |
8671708 | Jeong | Mar 2014 | B2 |
8701428 | Lee et al. | Apr 2014 | B2 |
8701436 | Kim | Apr 2014 | B2 |
8707726 | Lim et al. | Apr 2014 | B2 |
8733123 | Adamski et al. | May 2014 | B2 |
8746002 | Lee et al. | Jun 2014 | B2 |
8756952 | Adamski et al. | Jun 2014 | B2 |
8806884 | Park et al. | Aug 2014 | B2 |
8925340 | Chung et al. | Jan 2015 | B2 |
9068772 | Yeo et al. | Jun 2015 | B2 |
9085453 | McMahan et al. | Jul 2015 | B2 |
9188377 | Choi | Nov 2015 | B2 |
9284179 | Clancy et al. | Mar 2016 | B2 |
9415945 | Whitney et al. | Aug 2016 | B1 |
9476631 | Park et al. | Oct 2016 | B2 |
9593875 | Van Meter et al. | Mar 2017 | B2 |
9683771 | Anselmino et al. | Jun 2017 | B2 |
9791198 | Jeong et al. | Oct 2017 | B2 |
RE46794 | Lee et al. | Apr 2018 | E |
10119747 | You et al. | Nov 2018 | B2 |
10139147 | Kang | Nov 2018 | B2 |
10208997 | Visin | Feb 2019 | B2 |
RE48303 | Lee et al. | Nov 2020 | E |
11131492 | Scalf | Sep 2021 | B2 |
11137189 | Reuter | Oct 2021 | B1 |
11181309 | Shi et al. | Nov 2021 | B2 |
20040007009 | Wing et al. | Jan 2004 | A1 |
20050132739 | Sannasi | Jun 2005 | A1 |
20050178273 | Meuleners et al. | Aug 2005 | A1 |
20050268638 | Voglewede et al. | Dec 2005 | A1 |
20060016205 | Tremblay et al. | Jan 2006 | A1 |
20060059939 | An | Mar 2006 | A1 |
20060065008 | Park | Mar 2006 | A1 |
20060086132 | Maglinger et al. | Apr 2006 | A1 |
20060090496 | Adamski et al. | May 2006 | A1 |
20060162369 | Chae | Jul 2006 | A1 |
20060272347 | Park | Dec 2006 | A1 |
20070033960 | Egan et al. | Feb 2007 | A1 |
20070113578 | Wu et al. | May 2007 | A1 |
20070204643 | Harris | Sep 2007 | A1 |
20080157644 | Lee | Jul 2008 | A1 |
20080174220 | Kim et al. | Jul 2008 | A1 |
20080264089 | Sowa | Oct 2008 | A1 |
20080272679 | Wuesthoff et al. | Nov 2008 | A1 |
20080314065 | Kim | Dec 2008 | A1 |
20090008403 | Lee et al. | Jan 2009 | A1 |
20090008404 | Kim | Jan 2009 | A1 |
20090009042 | Kim et al. | Jan 2009 | A1 |
20090031751 | Ayvazoglu | Feb 2009 | A1 |
20090229284 | Fulton et al. | Sep 2009 | A1 |
20100037631 | Choi et al. | Feb 2010 | A1 |
20100044391 | Fallon | Feb 2010 | A1 |
20100050681 | Ryu et al. | Mar 2010 | A1 |
20100066224 | Placke et al. | Mar 2010 | A1 |
20100077789 | Lim | Apr 2010 | A1 |
20100082159 | Kim et al. | Apr 2010 | A1 |
20100293984 | Adamski et al. | Nov 2010 | A1 |
20110041542 | Brunner et al. | Feb 2011 | A1 |
20110126576 | Jeong | Jun 2011 | A1 |
20110138821 | Chase et al. | Jun 2011 | A1 |
20110167862 | Shin et al. | Jul 2011 | A1 |
20110174008 | Kim | Jul 2011 | A1 |
20110239687 | Lim et al. | Oct 2011 | A1 |
20120024002 | Oh | Feb 2012 | A1 |
20120031136 | Park | Feb 2012 | A1 |
20120036882 | Park et al. | Feb 2012 | A1 |
20120096872 | Cheong | Apr 2012 | A1 |
20120103002 | Lee et al. | May 2012 | A1 |
20130142457 | Jahrling et al. | Jun 2013 | A1 |
20130263620 | An et al. | Oct 2013 | A1 |
20130263621 | An et al. | Oct 2013 | A1 |
20140000303 | Jeong et al. | Jan 2014 | A1 |
20140000304 | Kim et al. | Jan 2014 | A1 |
20140182323 | Brunner et al. | Jul 2014 | A1 |
20140251498 | Park et al. | Sep 2014 | A1 |
20140252938 | Kirn et al. | Sep 2014 | A1 |
20140285082 | Choi et al. | Sep 2014 | A1 |
20160003294 | Lindinger | Jan 2016 | A1 |
20160084560 | Jeong et al. | Mar 2016 | A1 |
20160265816 | Gillette et al. | Sep 2016 | A1 |
20160341462 | Kim | Nov 2016 | A1 |
20160370102 | Yang | Dec 2016 | A1 |
20170082339 | Adamski et al. | Mar 2017 | A1 |
20170082340 | Adamski et al. | Mar 2017 | A1 |
20170138659 | Lee et al. | May 2017 | A1 |
20170167780 | Jeong et al. | Jun 2017 | A1 |
20170174493 | Aranda et al. | Jun 2017 | A1 |
20170292751 | Lee et al. | Oct 2017 | A1 |
20170314832 | Kim | Nov 2017 | A1 |
20180149408 | Akca et al. | May 2018 | A1 |
20190204001 | Scalf | Jul 2019 | A1 |
20210310714 | Olvera | Oct 2021 | A1 |
Number | Date | Country |
---|---|---|
1648561 | Aug 2005 | CN |
1690621 | Nov 2005 | CN |
1811308 | Aug 2006 | CN |
101650105 | Feb 2010 | CN |
102575891 | Jul 2012 | CN |
107314600 | Nov 2017 | CN |
108931095 | Dec 2018 | CN |
0779483 | Jun 1997 | EP |
3695178 | Aug 2020 | EP |
2001153525 | Jun 2001 | JP |
20060074931 | Jul 2006 | KR |
20100116767 | Nov 2010 | KR |
101123710 | Mar 2012 | KR |
20170055790 | May 2017 | KR |
1997029330 | Aug 1997 | WO |
2014086401 | Jun 2014 | WO |
Entry |
---|
U.S. Patent and Trademark Office, Final Office Action issued in U.S. Appl. No. 16/297,082 dated Jul. 14, 2022. |
U.S. Patent and Trademark Office, Final Office Action issued in U.S. Appl. No. 16/297,082 dated May 17, 2021. |
U.S. Patent and Trademark Office, Notice of Allowance issued in U.S. Appl. No. 16/441,791 dated Jan. 26, 2022. |
International Search Report and Written Opinion issued in Application No. PCT/CN2018/074188 dated Aug. 20, 2018. |
International Search Report and Written Opinion issued in Application No. PCT/CN2018/074255 dated Aug. 29, 2018. |
International Search Report and Written Opinion issued is Application No. PCT/CN2019/094349 dated Sep. 25, 2019. |
U.S. Patent and Trademark Office, Non-Final Office Action issued in U.S. Appl. No. 15/836,035 dated Oct. 17, 2019. |
U.S. Patent and Trademark Office, Non-Final Office Action issued in U.S. Appl. No. 15/835,953 dated Feb. 26, 2020. |
U.S. Patent and Trademark Office, Final Office Action issued in U.S. Appl. No. 15/836,035 dated May 14, 2020. |
U.S. Patent and Trademark Office, Office Action issued in U.S. Appl. No. 16/215,005 dated Jun. 23, 2020. |
U.S. Patent and Trademark Office, Office Action issued in U.S. Appl. No. 15/835,953 dated Sep. 4, 2020. |
U.S. Patent and Trademark Office, Advisory Action issued in U.S. Appl. No. 15/836,035 dated Aug. 18, 2020. |
U.S. Patent and Trademark Office, Notice of Allowance issued in U.S. Appl. No. 15/836,035 dated Oct. 5, 2020. |
U.S. Patent and Trademark Office, Notice of Allowance issued in U.S. Appl. No. 16/215,005 dated Oct. 15, 2020. |
U.S. Patent and Trademark Office, Corrected Notice of Allowance issued in U.S. Appl. No. 15/836,035 dated Oct. 16, 2020. |
U.S. Patent and Trademark Office, Office Action issued in U.S. Appl. No. 16/297,082 dated Oct. 21, 2020. |
U.S. Patent and Trademark Office, Corrected Notice of Allowance issued in U.S. Appl. No. 16/215,005 dated Oct. 23, 2020. |
Transmittal of Related Applications. |
U.S. Patent and Trademark Office, Advisory Action issued in U.S. Appl. No. 15/835,953 dated Dec. 14, 2020. |
Korea Intellectual Property Office, Notification of Reason for Refusal issued in Application No. 10-2020-7012986, dated Mar. 29, 2021. |
Australian Government IP, Examination Report No. 1 issued in Application No. 2018381656, dated Apr. 23, 2021. |
U.S. Patent and Trademark Office, Office Action issued in U.S. Appl. No. 15/835,953 dated Jun. 25, 2021. |
U.S. Patent and Trademark Office, Notice of Allowance issued in U.S. Appl. No. 16/441,791 dated Feb. 25, 2022. |
U.S. Patent and Trademark Office, Ex Parte Quayle Office Action issued in U.S. Appl. No. 16/441,791 dated Sep. 30, 2021. |
U.S. Patent and Trademark Office, Office Action issued in U.S. Appl. No. 16/297,082 dated Jan. 6, 2022. |
United States Patent and Trademark Office, Notice of Allowance issued in U.S. Appl. No. 16/297,082, 31 pages, dated Sep. 28, 2022. |
United States Patent and Trademark Office, Decision on Appeal issued in U.S. Appl. No. 15/835,953, 11 pages, dated Oct. 3, 2022. |
Number | Date | Country | |
---|---|---|---|
20210063071 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15836035 | Dec 2017 | US |
Child | 17098937 | US |