Refrigerator with cooling chamber-connecting drain pipe

Information

  • Patent Application
  • 20080078197
  • Publication Number
    20080078197
  • Date Filed
    June 25, 2007
    18 years ago
  • Date Published
    April 03, 2008
    17 years ago
Abstract
A refrigerator that prevents air from flowing between two storage chambers through drain pipes draining defrosted water is provided. The refrigerator includes a main body including a first cooling chamber generating cool air supplied to a first storage chamber, and a second cooling chamber generating cool air supplied to a second storage chamber; a first drain pipe draining water collected from the first cooling chamber to a water collecting basin provided at an outside of the first and second cooling chambers; and a second drain pipe draining water collected from the second cooling chamber to the water collecting basin. The first drain pipe includes an insertion portion, which is inserted into the second drain pipe and is extended to the water collecting basin.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

These and/or other aspects and advantages of the invention will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings in which:



FIG. 1 is a longitudinal sectional view of a conventional refrigerator;



FIG. 2 is a longitudinal sectional view of a refrigerator in accordance with a first embodiment of the present invention;



FIG. 3 is an enlarged view of the portion ‘A’ of FIG. 2;



FIG. 4 is a perspective view illustrating first and second drain pipes, which are integrated into one body, of a refrigerator in accordance with a second embodiment of the present invention; and



FIG. 5 is a perspective view illustrating first and second drain pipes, which are integrated into one body, of a refrigerator in accordance with a third embodiment of the present invention.





DETAILED DESCRIPTION OF THE EMBODIMENTS

Reference will now be made in detail to the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. The embodiments are described below to explain the present invention by referring to the annexed drawings.



FIG. 2 is a longitudinal sectional view of a refrigerator in accordance with a first embodiment of the present invention, and FIG. 3 is an enlarged view of the portion ‘A’ of FIG. 2.


As shown in FIG. 2, the refrigerator of the first embodiment includes a main body 10, which has a storage chamber 20 to store foods, a cooling chamber 30 to generate cool air supplied to the storage chamber 20, and a machinery chamber 40, in which various parts forming a refrigerating cycle are installed.


The main body 10 includes an external casing 11 forming the external appearance of the main body 10, and an internal casing 12 spaced from the external casing 11 at a designated interval, the external 11 and internal 12 casings forming the storage chamber 20 therein. The space between the external casing 11 and the internal casing 12 is filled with an insulating material 13, which is formed by foaming. The insulating material 13 serves to prevent cool air from escaping.


The storage chamber 20 is divided into two spaces, one above the other, i.e., two storage chambers 21 and 22, by a diaphragm 14. The storage chamber 21, which is located at the upper portion of the storage chamber 20, is referred to as a first storage chamber, and the storage chamber 22, which is located at the lower portion of the storage chamber 20, is referred to as a second storage chamber. Doors 21a and 22a to open and close the first and second storage chambers 21 and 22 are respectively connected to the front portions of the first and second storage chambers 21 and 22.


The cooling chamber 30 is divided into a first cooling chamber 31 provided in the rear of the first storage chamber 21 to generate cool air supplied to the first storage chamber 21, and a second cooling chamber 32 provided in the rear of the second storage chamber 22 to generate cool air supplied to the second storage chamber 22. Evaporators 33 and 34, which cool surrounding air through heat exchange with a refrigerant, and circulation fans 35 and 36, which circulate the air cooled by the evaporators 33 and 34, are respectively installed in the cooling chambers 31 and 32.


The machinery chamber 40 is located at the lower portion of the main body 10. A compressor 42 to compress a refrigerant in a low-temperature and low-pressure gaseous state into a high-temperature and high-pressure state, a condenser (not shown) to condense the refrigerant, which is compressed by the compressor 42, through heat exchange with surrounding air, and a cooling fan (not shown) to cool the compressor 42 and the condenser are installed in the machinery chamber 40.


The machinery chamber 40 serves as a water collecting basin to collect defrosted water drained from the first and second cooling chambers 31 and 32. For this reason, an evaporating dish 41 to store water discharged through a first drain pipe 50 and a second drain pipe 60 is installed in the machinery chamber 40. The water collected by the evaporating dish 41 is evaporated by heat emitted from the compressor 42 and the condenser.


As shown in FIGS. 2 and 3, a first water tray 37 to collect defrosted water generated during a process to defrost the evaporator (hereinafter, referred to as ‘a first evaporator’) 33 installed in the first cooling chamber 31 is installed below the first evaporator 33, and the first drain pipe 50 to drain the water collected by the first water tray 37 to the evaporating dish 41 provided in the machinery chamber 41 is connected to the first water tray 37. A drainage hole 37a is formed through the first water tray 37, and one end of the first drain pipe 50 is connected to the drainage hole 37a.


Further, a second water tray 38 to collect defrosted water dropped from the evaporator (hereinafter, referred to as ‘a second evaporator’) 34 installed in the second cooling chamber 32 is installed below the second evaporator 34, and the second drain pipe 60 to drain the water collected by the second water tray 38 to the evaporating dish 41 is connected to the second water tray 38.


The first and second drain pipes 50 and 60 are downwardly extended to the machinery chamber 40 located at the lower portion of the main body 10. Particularly, the first drain pipe 50 connected to the first water tray 37 is extended to the second cooling chamber 32 under the first cooling chamber 31, and is inserted into the second drain pipe 60 communicating with the second cooling chamber 32. That is, the first drain pipe 50 includes an insertion portion 51, which is downwardly extended and inserted into the second drain pipe 60, and an extension portion 52, which connects the first water tray 37 and the insertion portion 51 of the first drain pipe 50. As described above, if the first drain pipe 50 is extended to be inserted into the second drain pipe 60, it is possible to simplify the installation structures of the first and second drain pipes 50 and 60 as well as to prevent odors from being transferred between the first and second storage chambers 21 and 22 due to an air flow between the first and second storage chambers 21 and 22 through the first or second drain pipe 50 or 60.


As shown in FIG. 3, a drain channel 61 to guide the water collected by the second water tray 38 to the machinery chamber 40 is formed between the outer surface of the insertion portion 51 of the first drain pipe 50 and the inner surface of the second drain pipe 60. One end of the drain channel 61 is connected to a drainage hole 38a formed through the second water tray 38.


Hereinafter, with reference to FIGS. 2 and 3, the operation of the refrigerator of the first embodiment will be described.


Cool air is generated in the first and second cooling chambers 31 and 32 by the first and second evaporators 33 and 34. During the above cool air generating process, the surfaces of the first and second evaporators 33 and 34 are frosted over. When the surfaces of the first and second evaporators 33 and 34 are frosted, the heat exchanging efficiency of the first and second evaporators 33 and 34 is lowered. Accordingly, a defrosting process is performed in a constant cycle.


Defrosted water generated during the defrosting process of the first evaporator 33 is collected by the first water tray 37 installed below the first evaporator 33, and the collected defrosted water is drained to the evaporating dish 41 of the machinery chamber 40 through the first drain pipe 50. In the same manner, defrosted water generated during the defrosting process of the second evaporator 34 is collected by the second water tray 38, and the collected defrosted water is drained to the evaporating dish 41 through the drain channel 61 formed between the insertion portion 51 of the first drain pipe 50 and the second drain pipe 60. In the first embodiment, since the first drain pipe 50 and the second drain pipe 60 are independently communicating with the external space (i.e., the machinery chamber 40), an air flow between the first and second storage chambers 21 and 22 through the first and second drain pipes 50 and 60 does not occur. Further, since the first drain pipe 50 and the second drain pipe 60 are extended together such that the first drain pipe 50 is inserted into the second drain pipe 60, the installation structures of the first and second drain pipes 50 and 60 are simplified.



FIG. 4 is a perspective view illustrating first and second drain pipes, which are integrated into one body, of a refrigerator in accordance with a second embodiment. As shown in FIG. 4, a first drain pipe 71 and a second drain pipe 72 are integrated into one integral pipe unit 70. The integral pipe unit 70 of FIG. 4 includes connecting parts 74 formed in a second embodiment of the drain channel 73. The connecting parts 74 connect the outer surface of the first drain pipe 71 and the inner surface of the second drain pipe 72 to integrate the first and second drain pipes 71 and 72. When the two drain pipes 71 and 72 are integrated into one integral pipe unit 70, as described above, the drain pipes 71 and 72 are easily assembled into the integral pipe unit 70.



FIG. 5 is a perspective view illustrating first and second drain pipes, which are integrated into one body, of a refrigerator in accordance with a third embodiment. As shown in FIG. 5, an integral drain pipe unit 80 includes a first drain channel 81, one end of which is connected to the first water tray (water tray 37 shown in FIG. 2), and a second drain channel 82, one end of which is connected to the second water tray (water tray 38 shown in FIG. 2). The first drain channel 81 includes a lower channel 81a arranged parallel with the second drain channel 82 and extended downwardly, and an upper channel 81b extended upwardly from the lower channel 81a to the first water tray 37. The lower channel 81a and the second drain channel 82, which are arranged in parallel, are divided by a diaphragm 83, which is vertically extended. The second drain channel 82 is extended independently of the first drain channel 81 by the diaphragm 83. The integral drain pipe unit 80 of the second embodiment has a simple structure, compared to the drain pipe 70 of FIG. 4, thus reducing production costs.


As apparent from the above description, the present invention provides a refrigerator, in which installation structures of drain pipes are improved so that air cannot flow between storage chambers through drain pipes, thus preventing odors from being transferred between the storage chambers.


Further, two drain pipes are integrated into one pipe unit, thus reducing production costs of parts of the refrigerator and improving the efficiency of assembling the parts.


Although embodiments of the invention have been shown and described, it would be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents.

Claims
  • 1. A refrigerator, comprising: a main body including a first cooling chamber generating cool air supplied to a first storage chamber and a second cooling chamber generating cool air supplied to a second storage chamber;a first drain pipe draining water collected from the first cooling chamber to a water collecting basin provided at an outside of the first and second cooling chambers; anda second drain pipe draining water collected from the second cooling chamber to the water collecting basin,wherein the first drain pipe includes an insertion portion inserted into the second drain pipe and extended to the water collecting basin.
  • 2. The refrigerator according to claim 1, wherein a drain channel draining the water from the second cooling chamber to the water collecting basin is formed between the outer surface of the insertion portion and the inner surface of the second drain pipe.
  • 3. The refrigerator according to claim 2, wherein the first and second cooling chambers are divided from each other such that the first cooling chamber is located at an upper portion of the main body, and wherein the first drain pipe further includes an extension portion, which is extended upwardly from the insertion portion and is in communication with the first cooling chamber, and the drain channel is in communication with to the second cooling chamber.
  • 4. The refrigerator according to claim 2, wherein the first and second drain pipes are integrated into one body.
  • 5. The refrigerator according to claim 4, wherein connecting parts connecting the first and second drain pipes are provided in the drain channel.
  • 6. The refrigerator according to claim 1, wherein the water collecting basin is a machinery chamber located at a lower portion of the main body, and the refrigerator further comprises an evaporating dish to collect and to store water drained through the first and second drain pipes installed in the machinery chamber.
  • 7. A refrigerator, comprising: a first evaporator cooling a first storage chamber;a second evaporator installed below the first evaporator cooling a second storage chamber located under the first storage chamber;a first water tray disposed below the first evaporator;a second water tray disposed below the second evaporator;a first drain pipe having an end connected to the first water tray and extending downwardly; anda second drain pipe having an end connected to the second water tray and extending downwardly,wherein the first drain pipe includes an insertion portion inserted into the second drain pipe and extended.
  • 8. The refrigerator according to claim 7, wherein the first and second drain pipes are integrated into one body.
  • 9. A refrigerator, comprising: a first evaporator cooling a first storage chamber;a second evaporator installed below the first evaporator cooling a second storage chamber located under the first storage chamber;a first water tray disposed below the first evaporator;a second water tray disposed below the second evaporator; anda drain pipe draining water collected by the first and second water trays,wherein the drain pipe includes a first drain channel having one end connected to the first water tray and another end extending downwardly, and a second drain channel having one end connected to the second water tray and another end extending downwardly independently of the first drain channel.
  • 10. The refrigerator according to claim 9, wherein the drain pipe further includes a diaphragm extended vertically to divide the first and second drain channels from each other.
  • 11. A drainage system used within a refrigerator having a first cooling chamber and a second cooling chamber, comprising: a first water tray provided within the first cooling chamber to collect water created in the first cooling chamber;a second water tray provided within the second cooling chamber to collect water created in the second cooling chamber;a water collecting basin provided beneath the first and second cooling chambers; anda drain pipe extending from the first water tray through the second water tray to the water collecting basin, the drain pipe draining water collected by the first and second water trays to the water collecting basin.
  • 12. The drainage system according to claim 11, wherein the drain pipe comprises a first drain pipe part having an end connected to the first water tray and a second drain pipe part having an end connected to the second water tray, the first drain pipe part being extended through the second water tray, into the second drain pipe part and to the water collecting basin.
  • 13. The drainage system according to claim 11, wherein the drain pipe comprises a first drain pipe part having an end connected to the first water tray and a second drain pipe part having an end connected to the second water tray, the first and second drain pipe parts being integrated into an integral pipe unit.
  • 14. The drainage system according to claim 13, the integral pipe unit further comprising connecting parts connecting an outer surface of the first drain pipe part and an inner surface of the second drain pipe part to integrate the first and second drain pipe parts.
  • 15. The drainage system according to claim 13, wherein the integral pipe unit includes a first drain channel extending through the first drain pipe part and the second drain pipe part, and a second drain channel extending through the second drain pipe part.
  • 16. The drainage system according to claim 15, wherein the first drain channel includes an upper channel and a lower channel, the lower channel being arranged in parallel relation with the second drain channel and being divided by a diaphragm.
Priority Claims (1)
Number Date Country Kind
2006-95721 Sep 2006 KR national