The invention is related to a domestic refrigerator with an ice maker having a torsional release mechanism.
Conventional refrigeration appliances, such as domestic refrigerators, typically have both a fresh food compartment and a freezer compartment or section. The fresh food compartment is where food items such as fruits, vegetables, and beverages are stored. The freezer compartment is where food items that are to be kept in a frozen condition are stored. The refrigerators are provided with refrigeration systems that maintains the fresh food compartment at temperatures above 0° C., such as between 0.25° C. and 4.5° C. and the freezer compartments at temperatures below 0° C., such as between 0° C. and −20° C.
The arrangements of the fresh food and freezer compartments with respect to one another in such refrigerators vary. For example, in some cases, the freezer compartment is located above the fresh food compartment and in other cases the freezer compartment is located below the fresh food compartment. Additionally, many modern refrigerators have their freezer compartments and fresh food compartments arranged in a side-by-side relationship. Whatever arrangement of the freezer compartment and the fresh food compartment is employed, typically, separate access doors are provided for the compartments so that either compartment can be accessed without exposing the other compartment to the ambient air.
Ice makers typically have ice cubes with a pyramidal or tapered shape to facilitate cube removal (ejection/dumping) from the tray. While this has been a workable solution, there is a need to offer ice cubes with shapes other than the pyramidal or tapered shape, yet can still be easily removed (ejected/dumped) from tray. The invention disclosed below provides a solution to that problem.
A refrigerator has an ice maker. The ice maker has: a longitudinal axis; and a rotatable, stretchable ice cube tray with an upper face defining a plane offset from the longitudinal axis with openings for ice cubes, a fixed lateral end, and a rotatable lateral end, the upper face being parallel to the longitudinal axis, the offset being at least a depth of an ice cube. Ice cubes are released when a torsional force exerted on the rotatable lateral end twists the stretchable tray.
For the purpose of illustrating the invention, there is shown in the drawings a form that is presently preferred; it being understood, however, that this invention is not limited to the precise arrangements and instrumentalities and scale shown.
Embodiments of a refrigerator or a component thereof now will be described with reference to the accompanying drawings. Whenever possible, the same reference numerals are used throughout the drawings to refer to the same or like parts.
Referring now to the drawings,
One or more doors 16 shown in
For the latter configuration, a center flip mullion 21 (
A dispenser 18 (
The freezer compartment 12 is arranged vertically beneath the fresh food compartment 14. A drawer assembly (not shown) including one or more freezer baskets (not shown) can be withdrawn from the freezer compartment 12 to grant a user access to food items stored in the freezer compartment 12. The drawer assembly can be coupled to a freezer door 11 that includes a handle 15. When a user grasps the handle 15 and pulls the freezer door 11 open, at least one or more of the freezer baskets is caused to be at least partially withdrawn from the freezer compartment 12.
In alternative embodiments, the ice maker is located within the freezer compartment. In this configuration, although still disposed within the freezer compartment, at least the ice maker (and possible an ice bin) is mounted to an interior surface of the freezer door. It is contemplated that the ice mold and ice bin can be separate elements, in which one remains within the freezer compartment and the other is on the freezer door.
The freezer compartment 12 is used to freeze and/or maintain articles of food stored in the freezer compartment 12 in a frozen condition. For this purpose, the freezer compartment 12 is in thermal communication with a freezer evaporator (not shown) that removes thermal energy from the freezer compartment 12 to maintain the temperature therein at a temperature of 0° C. or less during operation of the refrigerator 10, preferably between 0° C. and −50° C., more preferably between 0° C. and −30° C. and even more preferably between 0° C. and −20° C.
The refrigerator 10 includes an interior liner 24 (
According to some embodiments, cool air from which thermal energy has been removed by the freezer evaporator can also be blown into the fresh food compartment 14 to maintain the temperature therein greater than 0° C. preferably between 0° C. and 10° C., more preferably between 0° C. and 5° C. and even more preferably between 0.25° C. and 4.5° C. For alternate embodiments, a separate fresh food evaporator can optionally be dedicated to separately maintaining the temperature within the fresh food compartment 14 independent of the freezer compartment 12.
According to an embodiment, the temperature in the fresh food compartment 14 can be maintained at a cool temperature within a close tolerance of a range between 0° C. and 4.5° C., including any subranges and any individual temperatures falling with that range. For example, other embodiments can optionally maintain the cool temperature within the fresh food compartment 14 within a reasonably close tolerance of a temperature between 0.25° C. and 4° C.
In general, the inventive ice maker 100 may include: a longitudinal axis 102; and a rotatable, stretchable ice cube tray 104 having openings 106 for ice cubes (not shown) with an upper face 108 defining a plane offset 204 from the longitudinal axis 102, a fixed lateral end 110, and a rotatable lateral end 112, the upper face 108 being parallel to the longitudinal axis 102, the offset 204 being at least a depth of an ice cube 200. Ice cubes are released when a torsional force exerted on the rotatable lateral end twists the stretchable tray.
Tray 104 is a stretchable or flexible tray. The flexibility may be imparted by, for example, the material of constructions, for example, a rubber type material of an elastic plastic (elastomer) material or by flexible joints between the individual cube molds. The tray 104 may include a plurality of cube molds 111 having opening 106. Cube molds 111 may have any shape. In some embodiments the cube mold shape may be pyramidal and/or non-pyramidal.
Referring to
Referring to
In operation, tray 104 is an untwisted position, see
The present invention may be embodied in other forms without departing from the spirit and the essential attributes thereof, and, accordingly, reference should be made to the appended claims, rather than to the foregoing specification, as indicating the scope of the invention.