The present disclosure generally relates to refrigerators, and more particularly relates to a dual evaporator refrigerator having a select temperature pan or compartment.
Evaporator-type refrigerators often include a fresh food compartment and a freezer compartment. These refrigerators usually employ a closed-loop cooling circuit for cooling the fresh food and freezer compartments. More particularly, the closed-loop cooling circuit can include a compressor, one or more evaporators for exchanging heat with the fresh food and freezer compartments, and a condenser. A fan can be provide in association with each evaporator used in the closed-loop circuit for blowing exchange air over the evaporator to more effectively cool the compartments.
In one configuration, a single evaporator is used to cool both the fresh food and freezer compartments. In this type of configuration, the single evaporator is typically disposed within the freezer compartment and airflow communication is needed between the freezer compartment and the fresh food compartment. Drawbacks associated with this arrangement include undesirably low humidity in the fresh food compartment due to moisture moving to the evaporator disposed within the freezer compartment (i.e., the coldest surface) and condensing thereon, and odors from the fresh food compartment passing into the freezer compartment. Such odors can become entrapped in the ice cubes made in the freezer compartment.
In another configuration, a pair of evaporators is used to cool the fresh food and freezer compartments. More particularly, a fresh food evaporator can be disposed within the fresh food compartment for cooling thereof and a freezer evaporator can be disposed within the freezer compartment for cooling thereof. When two evaporators are employed in a cooling circuit, a multi-way valve can be used to selectively direct the refrigerant between the evaporators. For example, depending on a position of the valve and refrigerator compartment conditions, part of the refrigerant may flood in one evaporator and be unavailable for use in another. This alternate configuration eliminates the humidity and odor problems, but is still somewhat limited.
For example, the fresh food compartment evaporator is typically limited to a temperature between about 34° F. to about 45° F. (about 1.1° C. to about 7.2° C.). The fresh food evaporator can thus be set to cool the entire fresh food cooling compartment to a temperature within this range (e.g., 37° F. or 2.8° C.). In some cases, however, it may be desirable to store an item (or a few items) at a cooled temperature other than that of the fresh food compartment. This other temperature may be a temperature within the fresh food evaporator range, but different than the temperature preferred for other items in the fresh food compartment (e.g., the fresh food compartment may be set at a preferred temperature of 37° F. or 2.8° C., but some item are preferably defrosted at a temperature of 40° F. or 4.4° C.). Alternatively, this other temperature may be outside the fresh food evaporator range, but not at room temperature or the temperature of the freezer compartment (e.g., an item, such as fresh fish, is preferably stored at a temperature of 30° F. or −1.1° C.).
According to one aspect, a dual evaporator refrigerator is provided. More particularly, in accordance with this aspect, the dual evaporator refrigerator includes a freezer compartment and a refrigeration compartment with an enclosed pan. The dual evaporator refrigerator also includes a freezer evaporator with a freezer fan for moving air from the freezer evaporator to the freezer compartment for cooling the freezer compartment and a refrigeration evaporator with a first refrigeration fan for moving air from the refrigeration evaporator to the refrigeration compartment for cooling the refrigeration compartment. A compressor provides refrigerant flow to the freezer and the refrigeration evaporators. A second refrigeration fan moves air from the refrigeration evaporator to the enclosed pan.
According to another aspect, a dual evaporator refrigerator is provided. More particularly, in accordance with this aspect, the dual evaporator refrigerator includes a fresh food evaporator and a fresh food fan for cooling a fresh food compartment. The dual evaporator refrigerator also includes a freezer evaporator and a freezer fan for cooling a freezer compartment. A compressor and a condenser are on a fluid circuit with the fresh food evaporator and the freezer evaporator for circulating a refrigerant through the fresh food and the freezer compartments. An auxiliary fan forces air from the fresh food evaporator into an enclosed compartment disposed within the fresh food compartment for independently controlling cooling within the enclosed compartment.
According to yet another aspect, a control method for a dual evaporator refrigerator is provided. More particularly, in accordance with this aspect, refrigerant is selectively provided to a fresh food evaporator disposed in a fresh food compartment. Refrigerant is also selectively provided to a freezer evaporator disposed in a freezer compartment. A fresh food fan adjacent the fresh food evaporator is selectively operated when the refrigerant is provided to the fresh food evaporator for cooling the fresh food compartment. A freezer fan adjacent the freezer evaporator is selectively operated when the refrigerant is provided to the freezer evaporator for cooling the freezer compartment. An auxiliary fan is selectively operated that directs air flow from the fresh food evaporator to an enclosed compartment disposed within the fresh food compartment.
Referring now to the drawings wherein showings are for purposes of illustrating one or more exemplary embodiments,
In accordance with known refrigerators, the refrigerator 100 can include a machinery compartment (not shown) that at least partially contains components for executing a known vapor compression cycle for cooling air. The components can include a compressor 106, a condenser 108, at least two evaporators 110,112 and one or more expansion devices (not shown), all interconnected in a refrigeration circuit 114 and charged with a refrigerant. As is known and understood by those skilled in the art, the evaporators 110,112 are types of heat exchangers which transfer heat from air passing thereover to the refrigerant flowing therethrough, thereby causing the refrigerant to vaporize. The cooled air is then used to refrigerate one or more refrigerator or freezer compartments via fans, such as fans 116,118. Collectively, the vapor compression cycle components in a refrigeration circuit, associated fans, and associated components can be referred to as a sealed system or a closed-loop vapor compression cooling circuit.
More particularly, the evaporator 110 can be a refrigeration evaporator with a fresh food fan 116 in the refrigeration compartment 102 for cooling thereof. The evaporator 112 can be a freezer evaporator with a freezer fan 118 in the freezer compartment 104 for cooling of the freezer compartment. As will be described below in more detail, the compressor 106 selectively provides refrigerant flow to the freezer and refrigeration evaporators 110,112 for cooling of the respective compartments 102,104. In an exemplary embodiment, the compressor 106 is a variable speed compressor, and the fans 116,118 can each be variable speed fans coupled to their respective evaporators 110,112 for circulating air through their respective evaporators.
As shown, the compressor 106 can be connected in series with the condenser 108 and a flow control device 120 which regulates flow of refrigerant to each of the fresh food evaporator 110 and the freezer evaporator 112. Particularly, the flow control device 120 directs the refrigerant to the fresh food evaporator 110 when cooling of the fresh food compartment 102 is desired and directs the refrigerant to the freezer evaporator 112 when cooling of the freezer compartment 104 is desired. In an exemplary embodiment, the flow control device 120 is a three-way valve with a stepper motor 120a that controls flow of the refrigerant to the freezer and refrigeration evaporators 110,112.
As is known and understood by those skilled in the art, step per motor 120a of three-way valve 120 can operate by a series of impulses that moves the valve 120 incrementally in a plurality of steps between a plurality of operational positions. For example, the valve 120 can be moved to a closed position wherein no refrigerant is allowed to pass to either of the evaporators 110,112, to a second position where all refrigerant is directed to the evaporator 110, a third position wherein all refrigerant is directed to the evaporator 112, or any intermediate position (e.g., supplying a proportioned amount of refrigerant to the fresh food evaporator 110 and the freezer evaporator 112).
As shown schematically in
With additional reference to
More particularly, with additional reference to
With particular reference to
In addition, a circulating or bypass passage 154 and a damper 156 can be provided. The circulating passage 154 is in airflow communication with the enclosed pan 130 and with the air duct upstream of the auxiliary fan 140. The damper 156 is movable between a first position (the position illustrated in
A user interface 152 can be operatively connected to the control unit 122 for receiving input on a desired temperature of the enclosed compartment 130. The control unit 122 can control the compressor 106, the three-way valve 120, the first and second refrigerator fans 116,140, the freezer fan 118 the heater 148, and/or the damper 156 based on the input received from the user interface 152 in cooperation with measurements taken by the thermal sensor 150.
In an exemplary embodiment, the refrigerator evaporator 110 can cool the refrigerated compartment 102 to a temperature within a range of about 34° F. to about 45° F. (about 1.1° C. to about 7.2° C.). Independently, in one exemplary embodiment, the second fan 140 can be used in conjunction with the evaporator 110 and/or the heater 148 to maintain the temperature of the enclosed compartment at a desired temperature between about 30° F. to about 60° F. (about −1.1° C. to about 15.6° C.), for example. Of course, other ranges can be used (e.g., about 30° F. or −1.1° C. to about 47° F. or 8.3° C., etc.).
Such independent temperature control allows the enclosed compartment 130 to be used to maintain the temperature of a relatively small number of refrigerated items to a cooled level below that of the refrigerated compartment 102 (e.g., for fresh fish), or to a cooled level above the refrigerated compartment (e.g., for fast defrosting, such as at a temperature of about 40° F.), without otherwise affecting the temperature maintained within the refrigerated compartment 102. Accordingly, items within the enclosed compartment 130 could be cooled at a temperature other than that maintained generally in the refrigerated compartment 102 (and other than room temperature or the temperature of the freezer compartment 104). In another application, the enclosed compartment 130 can be used to rapidly or quickly chill refrigerated items received therein at a rate much faster than such items would otherwise be cooled in the refrigerated compartment 102. Unlike cooling in the freezer compartment 104, care need not necessarily be taken to remove the item at a prescribed time (e.g., before the item freezes) during rapid cooling in the enclosed compartment 130.
A control method for the dual evaporator refrigerator 100 will now be described. Through the valve 120, refrigerant is selectively provided to the fresh food evaporator 110 disposed in the fresh food compartment. Likewise, using the valve 120, the refrigerant is selectively provided to the freezer evaporator 112 disposed in the freezer compartment 104. The fresh food fan 116 adjacent the fresh food evaporator 110 is selectively operated by the controller 122 when the refrigerant is provided to the fresh food evaporator 110 for cooling of the fresh food compartment 102. Likewise, the controller 122 selectively operates the freezer fan 118 disposed adjacent the freezer evaporator 112 for cooling the freezer compartment 104 when the refrigerant is provided to the freezer evaporator 112. The controller 122 also selectively operates the auxiliary fan 140, also referred to as the second fan 140 in the refrigerated compartment relative to the fan 116, wherein the auxiliary fan 140 can direct airflow from the fresh food evaporator 110 to the enclosed compartment 130 disposed within the fresh food compartment 102.
Additionally, the controller 122 can operate the auxiliary fan 140 with the heater 148 and the damper 156 to heat airflow directed to the enclosed compartment 130 for heating thereof. Specifically, with the damper 156 in the second position, the fan 140 circulates airflow past the heater 148, through the enclosed pan 130 and back to the heater 148 via the circulating passage 154. To conserve energy, the controller 122 can turn off the compressor 106 to arrest the provision of the refrigerant to both the fresh food evaporator 110 and the freezer evaporator 112 when no cooling of the compartments 102,104 or the enclosed compartment 130 is desired. Of course, to cool the freezer compartment 104, the controller 122 operates the compressor and the valve 120 to provide the refrigerant to the freezer evaporator 112 and operates the freezer fan 118 via the freezer fan motor 118a to cool the freezer compartment 104. Similarly, the controller 122 operates the compressor 106 and the valve 120 to provide the refrigerant to the fresh food evaporator 110 and operates the fan 116 via the fan motor 116a when cooling of the fresh food compartment 102 is desired. When the refrigerant is provided to the fresh food evaporator 110, the auxiliary fan 140 can be operated by the controller to cool the enclosed compartment 130.
With reference to
The exemplary embodiment or embodiments have been described with reference to preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the exemplary embodiments be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.