Refrigerator

Information

  • Patent Application
  • 20050217307
  • Publication Number
    20050217307
  • Date Filed
    April 02, 2004
    20 years ago
  • Date Published
    October 06, 2005
    19 years ago
Abstract
Disclosed is a refrigerator with a freezing chamber and a cooling chamber, in which an evaporating unit is provided in a means for partitioning between the freezing chamber and the cooling chamber. The refrigerator comprises of freezing and cooling chambers, each of the freezing and cooling chambers being provided with at least one received space; an evaporator; and a means for transmitting and controlling a cooling air heat-exchanged with the evaporator toward at least one place in the freezing and cooling chambers, wherein a means for partitioning the freezing and cooling chambers from each other has a predetermined space therein, the predetermined space is provided with the evaporator and at least one means for transmitting and controlling the cooling air.
Description
BACKGROUND OF THE INVENTION

1) Field of the Invention


The invention relates to a refrigerator constituting a freezing chamber and a cooling chamber, in which an evaporating unit is provided in a means for partitioning between the freezing chamber and the cooling chamber.


2) Description of the Related Art


A conventional refrigerator is generally configured of two chambers, a freezing chamber and a cooling chamber, which are vertically separated from each other. A current refrigerator is gradually changed into a structure capable of opening/closing the freezing and cooling chamber at the front.



FIG. 1 is a block diagram showing a freezing cycle of a general refrigerator.


As shown in FIG. 1, a refrigerant compressed by a compressor 21 enters a condenser 24. The refrigerant passing through the condenser 24 enters a capillary tube 23. The refrigerant passing through the capillary tube 23 enters an evaporator 24 to generate a freezing effect, and then re-enters the compressor 21 to be compressed. This process is repeated.


Here, the compressor 21 changes the gaseous refrigerant of a low-temperature and low-pressure into that of a high-temperature and high-pressure, and discharges the changed result toward the condenser 24. The condenser 24 cools the gaseous refrigerant of the high-temperature and high-pressure into a liquid refrigerant of a middle-temperature and high-pressure by heat radiation, and introduces the cooled result into the capillary tube 23. The liquid refrigerant of the middle-temperature and high-pressure passes through the capillary tube 23 to become a liquid refrigerant of a low-temperature and low-pressure. While passing through the evaporator 22, the liquid refrigerant of the low-temperature and low-pressure takes heat from inside of a main body of the refrigerator, and becomes a gaseous refrigerant of the low-temperature and low-pressure. The gaseous refrigerant of the low-temperature and low-pressure is introduced into the compressor 21 again.


Therefore, this freezing cycle is repeated, so that freezing and cooling effects are generated inside of the refrigerator.



FIG. 2 is a perspective view showing a conventional refrigerator, whose doors are opened.


As shown in FIG. 2, a refrigerator is designed so that a freezing chamber 1 and a cooling chamber 2, both of which are provided a plurality of received spaces, are divided from each other and are opened (or closed) by a door of the refrigerator.


The cooling chamber 2 is used to keep various foods including meat and vegetables which are required not only for maintenance of a degree of freshness at a low temperature, but also for storage for a short time period, as well as beverages for drinking at a low temperature, while the freezing chamber 1 is used to deposit various foods which are required for storage for a long time period at a very low temperature (of about −18° C.).


In order to maintain the freezing chamber 1 at the very low temperature, a cooling air is generated from an evaporator (7 of FIG. 3) performing a freezing cycle, and is supplied through an outlet 5 provided on a rear wall 4 of the freezing chamber 1.



FIG. 3 is a side cross-sectional view showing a conventional refrigerator, in which an evaporator unit is mounted on a rear wall of a freezing chamber, and FIG. 4 is an exploded perspective view showing a structure of the evaporator unit shown in FIG. 3.


A process of discharging a cooling air from an evaporator 7 will be described in more detail. As shown in the figures, a rear wall 4 of a freezing chamber is provided with a shroud 8 as a path for the cooling air. The shroud 8 is provided with the evaporator unit on the rear thereof. The evaporator unit is comprised of an evaporator 7, a blow fan 9 and a cooling air outlet 5. The cooling air generated from the evaporator 7 travels along the cooling air path formed by the shroud 8 while being forcibly circulated by the blow fan 9, and is finally discharged through the cooling air outlet 5 provided at a predetermined position of the rear wall 4 of the freezing chamber.


However, when the evaporator unit is provided on the rear of the shroud 8 located at the rear wall 4 of the freezing chamber, a part of space of the freezing chamber is occupied by the evaporator unit. For this reason, a real efficient volume of the freezing chamber is reduced, so that a user experiences reduced convenience.


In other words, because the above-mentioned evaporator is wide, thick and short, a large extra space exists under the evaporator as a portion “A” of FIG. 3. Nevertheless, the extra space is not used, so that the entire received space of the freezing chamber is not efficiently used.


SUMMARY OF THE INVENTION

Therefore, an objective of the present invention is to maximize usefulness of a refrigerator by disposing an evaporator unit in a space other than a predetermined space of a freezing chamber or a cooling chamber.


Therefore, as one example, it is proposed that the evaporator unit is provided in a compartment which partitions the freezing chamber and the cooling chamber from each other.


In order to accomplish the objective, there is provided a refrigerator comprising: freezing and cooling chambers, each of the freezing and cooling chambers being provided with at least one received space; an evaporator; and a means for transmitting and controlling a cooling air heat-exchanged with the evaporator toward at least one place in the freezing and cooling chambers, wherein a means for partitioning the freezing and cooling chambers from each other has a predetermined space therein, the predetermined space is provided with the evaporator and at least one means for transmitting and controlling the cooling air.


As one example, the refrigerator includes a blow fan as the means for transmitting the cooling air to at least one place in the freezing and cooling chambers.


As another example, the refrigerator includes a cooling air outlet through which the cooling air is discharged by the means for transmitting the cooling air to at least one place in the freezing and cooling chambers.


Therefore, the refrigerator having the evaporator in the compartment for partitioning the freezing chamber and the cooling chamber from each other can increase utility of the refrigerator and convenience of the user compared to that of the same size by maximizing availability of the received space as the efficient volume of the refrigerator.




BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram showing a freezing cycle of a general refrigerator;



FIG. 2 is a perspective view showing a conventional refrigerator, whose doors are opened;



FIG. 3 is a side cross-sectional view showing a conventional refrigerator, in which an evaporator unit is mounted on a rear wall of a freezing chamber;



FIG. 4 is an exploded perspective view showing a structure of the evaporator unit shown in FIG. 3;



FIG. 5 is a schematic front view showing a configuration where an evaporator unit is provided between a freezing chamber and a cooling chamber in accordance with the present invention;



FIG. 6 is a magnified and detailed view showing the evaporator unit of FIG. 5;



FIG. 7 shows a first embodiment of a refrigerator having the evaporator, the blow fan and the cooling air outlet of FIG. 5;



FIG. 8 shows a second embodiment of a refrigerator having the evaporator, the blow fan and the cooling air outlet of FIG. 5; and



FIG. 9 shows a third embodiment of a refrigerator having the evaporator, the blow fan and the cooling air outlet of FIG. 5.




DETAILED DESCRIPTION OF THE INVENTION

Hereinafter, description will now be made in detail regarding preferred embodiments of refrigerator in which an evaporator unit is provided in a compartment partitioning a freezing chamber and a cooling chamber from each other in accordance with the present invention with reference to the accompanying drawings.



FIG. 5 is a schematic front view showing a configuration where an evaporator unit is provided between a freezing chamber and a cooling chamber in accordance with the present invention.


As shown in FIG. 5, an evaporator unit 13 is provided in a compartment, a mullion, between a freezing chamber and a cooling chamber. An evaporator 7 is disposed at a certain position of the evaporator unit. A blow fan and a cooling air outlet 14 are provided on an upper or lower portion of the evaporator, and function to transmit or control a cooling air passing through the evaporator to the freezing chamber and/or the cooling chamber.


The freezing chamber and the cooling chamber are generally partitioned and spaced apart from each other by the compartment 6. The compartment 6 has a predetermined thickness. Thus, a certain size of space is formed in the compartment.



FIG. 6 is a magnified and detailed view showing the evaporator unit of FIG. 5.


The evaporator 7 for generating the cooling air is arranged at a certain position of the space formed in the compartment 6, for example on a middle or lower portion of the compartment. The cooling air generated from the evaporator 7 is finally discharged toward the freezing chamber 1 and the cooling chamber 2 through a cooling air outlet 11 provided on one side of the compartment.


In order to smoothly circulate the cooling air, a blow fan 9 for circulating the cooling air by force is preferably mounted between the evaporator 7 and the cooling air outlet 11. The cooling air generated from the evaporator 7 at this time is forcibly circulated by the blow fan 11 and then is discharged toward the cooling air outlet 11.


Meanwhile, in order to accelerate a stream of the cooling air, a predetermined interval of path between side walls defining a passage of the cooling air is narrowed. Thereby, a velocity of the cooling air can be increased.


Further, there is a guide 11a for guiding the cooling air forced by the blow fan to be introduced into the freezing and cooling chambers. A means for controlling the cooling air discharged from the cooling air outlet is provided, and for example, a damper unit 11b may be provided.



FIG. 7 shows a first embodiment of a refrigerator having the evaporator, the blow fan and the cooling air outlet of FIG. 5.


The evaporator 7 of the evaporator unit 13 is provided in the space 6 between the freezing chamber 1 and the cooling chamber 2. The means 14, such as the blow fan and the cooling air outlet 11, for guiding and controlling the cooling air passing through the evaporator to the freezing chamber and the cooling chamber is provided


The evaporator may be mounted around the middle portion of the compartment.



FIG. 8 shows a second embodiment of a refrigerator having the evaporator, the blow fan and the cooling air outlet of FIG. 5. The evaporator can be provided on a lower portion of the compartment.



FIG. 9 shows a third embodiment of a refrigerator having the evaporator, the blow fan and the cooling air outlet of FIG. 5. The path between the side walls, as the passage of the cooling air, for transmitting the cooling air passing through the blow fan to the cooling air outlet is uniformly formed.


As can be seen from the foregoing refrigerator composed of the freezing chamber and the cooling chamber, the evaporator unit is provided in the means for partitioning the freezing chamber and the cooling chamber from each other, so that it is possible to maximize availability of the received space as the efficient volume of the refrigerator. Eventually, the utility of the refrigerator is increased compared to that of the same size, and simultaneously it is possible to increase convenience of the user.


While the preferred embodiments of the present invention have been described, the present invention may be employed to various changes, modifications and their equivalents. Thus, it is apparent that the embodiments of the present invention can be properly modified and applied in the same manner.


For example, in the case that the freezing chamber and the cooling chamber are partitioned up and down, a space between them may be provided with the evaporator unit and the means for transmitting and controlling the cooling air.


Therefore, it should be understood that the above-described embodiments are not limited by any of the details of the foregoing description, but rather should be construed broadly within its spirit and scope as defined in the appended claims.

Claims
  • 1. A refrigerator comprising: freezing and cooling chambers, each of the freezing and cooling chambers being provided with at least one received space; an evaporator; and a means for transmitting and controlling a cooling air heat-exchanged with the evaporator toward at least one place in the freezing and cooling chambers, wherein a means for partitioning the freezing and cooling chambers from each other has a predetermined space therein, the predetermined space is provided with the evaporator and at least one means for transmitting and controlling the cooling air.
  • 2. The refrigerator as claimed in claim 1, wherein the refrigerator includes a blow fan as the means for transmitting the cooling air to at least one place in the freezing and cooling chambers.
  • 3. The refrigerator as claimed in claim 1, wherein the refrigerator includes a cooling air outlet through which the cooling air is discharged by the means for transmitting the cooling air to at least one place in the freezing and cooling chambers.
  • 4. The refrigerator as claimed in claim 3, wherein the refrigerator includes a damper unit as the means for transmitting the cooling air to at least one place in the freezing and cooling chambers.
  • 5. The refrigerator as claimed in claim 1, wherein a part of path forming a passage of the cooling air is narrowed in order to change a stream of the cooling air outputted by a blow fan.
  • 6. The refrigerator as claimed in claim 1, wherein the refrigerator includes a guide for guiding the cooling air outputted by a blow fan toward a cooling air outlet.