1. Field
This relates to a refrigerator, and more particularly, to a refrigerator including a main door and a sub door.
2. Background
Generally, an interior temperature of a refrigerator may be reduced/maintained cool air generated by a refrigeration cycle including a compressor, a condenser, an expansion valve, and an evaporator to store items in a frozen state or in a refrigerated state. For example, a refrigerator may include a freezer compartment for storing items in a frozen state and a refrigerator compartment for storing items at low temperature.
The embodiments will be described in detail with reference to the following drawings in which like reference numerals refer to like elements wherein:
Reference will now be made in detail to various embodiments, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
A refrigerator may be classified as a top mount type refrigerator in which a freezer compartment is disposed above a refrigerator compartment, a bottom freezer type refrigerator in which a freezer compartment is disposed under a refrigerator compartment, or a side by side type refrigerator in which a freezer compartment and a refrigerator compartment are partitioned by a partition wall so that the freezer compartment is vertically disposed at one side of the refrigerator and the refrigerator compartment is vertically disposed at the other side of the refrigerator. The refrigerator cools, such a freezer compartment and/or a refrigerator compartment using cool air generated through heat exchange with a refrigerant circulating in the refrigeration cycle. As a result, the interior of the refrigerator is generally maintained at a lower temperature than the outside.
The freezer compartment and the refrigerator compartment may be provided in a cabinet constituting a refrigerator body and may be selectively opened or closed by a freezer compartment door and a refrigerator compartment door, respectively rotatably mounted to the cabinet, with a gasket for providing sealing between each door and the cabinet. Since the interior temperature of the freezer compartment and the refrigerator compartment is lower than the temperature of external air, dew, or condensation/moisture, may be formed at the front of the cabinet, outside the portion thereof with which the gasket of each of the doors comes into contact, due to temperature difference between the inside and the outside of the refrigerator.
A heater may be installed at an area at which moisture is typically accumulated so that the area may be heated by the heater to prevent moisture/condensation from being formed at the outer surface of the refrigerator.
Additionally, a sub door may be provided at the refrigerator door to reduce leakage of cool air due to frequent opening and closing of the door and, in addition, to facilitate insertion and removal of items from the refrigerator. Such a sub door may open and close an opening formed at the front of the refrigerator door. When the refrigerator door may be closed, the sub door is opened and closed so that items may be stored in a basket formed at the inside of the sub door and removed from the basket.
The refrigerator 1 is a side by side type refrigerator including a freezer compartment door 10 and a refrigerator compartment door 20 rotatably mounted to a refrigerator body by hinges 13 and 23 provided at the left and right upper ends of the refrigerator body so that a sub door 30 and the refrigerator compartment door 20 may rotate about the hinges 13 and 23. In other words, in the exemplary refrigerator shown in
The freezer compartment door 10 and the refrigerator compartment door 20 may include depressions 15 and 25 respectively formed at intermediate portions thereof, with grooves formed at the top and bottom of each of the depressions 15 and 25. When a push button 35 provided on the sub door 30 is pushed, the sub door 30 may be opened or closed by an opening and closing device 21 provided at the main door 20.
When the push button 35 is pushed, a protrusion 31 that protrudes from the inside of the sub door 30 may be inserted into or separated from a groove of the opening and closing device 21 to close or open the sub door 30.
As shown in
A gasket may be provided along the edge of the inside of the sub door 30 for sealing a storage compartment defined between the main door 20 and the sub door 30. When the sub door 30 is closed, the gasket 32 comes into contact with the edge of the front part of the main door 20 to seal the storage compartment formed between the sub-door 30 and the main door 20. Condensation may be formed at the edge of the front part of the main door 20, outside the region thereof with which the gasket 32 comes into contact, due to temperature difference between internal air and external air.
In order to prevent condensation from forming/accumulating on the surface of the edge of the main door 20, an electric heating type heater 50 may be provided adjacent to the front surface of the main door 20.
As shown in
The gasket 32 may be provided on the rear surface 30R of the sub door 30 so that the gasket 32 comes into contact with the front surface 20F of the main door 20 to seal the internal space. Another gasket 22 may be provided on the rear surface 20R of the main door 20 to seal the internal space when the gasket 22 conies into contact with the front part of the refrigerator body 1. A portion of the front surface 20F of the main door 20 may have an inclined surface 20I. The sub door 30 may also have an inclined surface 30I corresponding to the inclined surface 20I of the main door 20. As a result, a central portion of the sub door 30 may be thicker than the edge of the sub door 30.
Generally, a door may include an outer door formed of a sheet material, and a door liner formed of acrylonitrile butadiene styrene copolymer (ABS) resin. The outer door and the door liner may together define the external surface of the door. A space formed therebetween may be filled with a foam for heat insulation.
For example, an internal space defined by the door liner 26 and the outer door 27 of the main door 20 shown in
As shown in
The heater 50 may be positioned adjacent to the front surface 20F of the main door 20, at the periphery of the gasket 32, as condensation is most easily formed in this area.
In a case in which the heater 50 is installed in this manner, the heater 50 consumes power, thus increasing overall power consumption of the refrigerator. Also, heat generated by the heater 50 may be transferred to the storage compartment, thus increasing heat load of the storage compartment. Additionally, in a case in which the width of the sub door 30 is equal to that of the main door 20, a larger amount of condensation may be formed than in a case in which the width of the sub door 30 is less than that of the main door, thus further increasing power consumption and heat transfer.
As shown in
As discussed above, the exemplary refrigerator shown in
The description herein has been directed mainly to a side by side type refrigerator. However, it is understood that these features may be applied to other types of refrigerators having a main door for opening and closing a storage compartment and a sub door for opening and closing an additional receiving compartment provided at the main door, and the width of the sub door is almost equal to that of the main door. The position of the main door and the sub door on the refrigerator may be adjusted as appropriate.
As previously discussed with respect to
That is, when the sub door 30 comes into contact with the main door 20, the gasket 32 comes into tight contact with the front surface 20F of the main door 20. As shown in
The outer door 27 of the main door 20 may be formed of a metal sheet, particularly a steel sheet. In the same manner, the heat transfer member 110 may also be formed of a steel sheet. The heat transfer member 110 may be integrally formed with the outer door 27 of the main door 20. Alternatively, the heat transfer member 110 may be separately formed, and then the heat transfer member 110 may be connected to the outer door 27. The heat transfer member 110 may be formed at the front surface 20F of the main door 20, extending along the inside of the door liner 26.
The refrigerator shown in
Although the heat transfer member 110 shown in
In particular, the heat transfer member 120 shown in
In a case in which the heat transfer member 120 is configured in the form of a metal tape, the heat transfer member 120 may be cut and attached to a required region of the inside of the door liner 26 during manufacturing of the refrigerator door, thereby simplifying manufacture of the door. The metal tape may be made of, for example, an aluminum material. Since aluminum exhibits relatively high thermal conductivity and ductility, aluminum may be readily provided in tape form.
In the embodiment shown in
That is, a portion of the inner side of the main door 20 forms the inclined surface 20I, and the portion of door liner 26 constituting the inclined surface 20I includes a heat blocking part 130 formed so that the thickness of one portion of the inclined surface 20I is less than that of remaining portions of the inclined surface 20I.
The heat blocking part 130 may be formed so that the thickness of a portion of the door liner 26 constituting the inclined surface 20I of the main door 20 is less than that of the remaining portion of the door liner 26 to prevent cool air inside the storage compartment from being transferred to the outside of the gasket 32 via the door liner 26.
In certain embodiments, plurality of heat blocking parts 130 may be provided. Hereinafter, the heat blocking part formed in at the inclined surface 20I of the main door 20 will be referred to as a first heat blocking part 131.
The first heat blocking part 131 may be formed at a portion of the door liner 26 constituting the inclined surface 20I of the main door 20. Cool air from the storage compartment comes into direct contact with this portion of the door liner 26, thus cooling this portion of the door liner 26. However, the gap between the portion of the door liner 26 constituting the inclined surface 20I of the main door 20 and the facing inclined surface 30I of the sub door 30 is relatively narrow, and therefore, a degree at which cool air from the storage compartment is conducted via the door liner 26 may be greater than a degree of cooling achieved by direct contact with cool air.
Consequently, the portion of the door liner 26 constituting the inclined surface 20I of the main door 20 may be formed so that its thickness is equal to or less than half that of the remaining portion of the door liner 26 to minimize conduction of cool air via the door liner 26.
The thickness of the first heat blocking part 131 may be reduced by forming a groove at the inside of the door liner 26. In this case, the door may have a smooth external appearance after assembly of the door.
The door liner 26 constituting the front surface 20F of the main door 20 may also include a second heat blocking part 132 formed so that the thickness of a portion thereof contacting the gasket 32 is less than that of remaining portions of the door liner 26.
Cool air in the storage compartment is not directly transferred to the portion of the door liner 26 tightly contacting the gasket 32, but the cool air may be transferred to the outside through thermal conduction of the door liner 26. For this reason, a groove may be formed inside the portion of the door liner 26 tightly contacting the gasket 32 to reduce the thickness of this portion of the door liner 26 while having a flat external appearance.
Also, the rear surface 30R of the sub door 30 may include the inclined surface 30I opposite the inclined surface 20I of the main door 20. The door liner 36 may extend to the inclined surface 30I of the sub door 30 and face the first heat blocking part 131 with a third heat blocking part 133 whose thickness is less than that of the remaining portion of the inclined surface 30I.
As described, the door liner 26 of the main door 20 includes the inclined surface 20I, and the door liner 36 of the sub door 30 also includes the inclined surface 30I.
Condensation is mainly formed at the portion of the front surface 20F of the main door 20 contacting the gasket 32. However, condensation may be formed at the rear surface 30R of the sub door 30 outside the gasket 32 due to a temperature difference between the inside and the outside.
For this reason, the third heat blocking part 133 is formed at the portion of the door liner 36 constituting the inclined surface 30I of the sub door 30, to prevent condensation from being formed at the rear surface 30R of the sub door 30 outside the gasket 32.
Although the heat transfer member 110 or 120 is not shown in embodiment shown in
Consequently, cooling by cool air in the storage compartment may be restrained by the heat blocking part 130 and heat transfer from the outside via the heat transfer member 110 or 120 may be accelerated, thereby more effectively preventing condensation from being formed on the outer surface of the door liner 26.
As shown in
The refrigerator is configured so that the width of the sub door 30 is substantially equal to that of the main door 20, the height of the sub door 30 is less than that of the main door 20, and the top of the sub door 30 and the top of the main door 20 are co-planar.
The gasket 32 is provided along the edge of the rear surface 30R of the sub door 30 in a rectangular shape. The heat transfer member 110 or 120 may be provided to transfer heat from the top of the sub door 30 as well as from the side of the sub door 30.
In a case in which at least one side of the sub door 30 has the same plane as a corresponding side of the main door 20, therefore, the at least one side of the sub door 30 may be the top or bottom of the sub door 30 as well as opposite sides of the sub door 30.
A refrigerator as embodied and broadly described herein may effectively prevent dew, or moisture/condensation, from being formed at a portion of the front surface of the main door contacting the gasket.
Also, in a refrigerator as embodied and broadly described herein, an additional heater for preventing formation of moisture/condensation may not be required at the inside of the door liner, but a heat transfer member may be structurally formed, thereby efficiently preventing formation of moisture/condensation.
Also, in a refrigerator as embodied and broadly described herein heater may reduce power consumption and prevent heat from the heater from penetrating into the storage compartment of the refrigerator.
A refrigerator as embodied and broadly described herein may include a main door and a sub door that rotatably open and close a storage compartment, and may have a structure to prevent dew from being formed at a front part of the main door.
A refrigerator as embodied and broadly described herein may be capable of efficiently preventing dew from being formed by the structure of a door without installation of an additional heater.
A refrigerator as embodied and broadly described herein may include a refrigerator body having at least one storage compartment defined therein, the refrigerator body being provided at the front thereof with an opening, a main door for opening and closing the storage compartment, the main door being provided at a front thereof with an opening, the main door having a receiving compartment provided separately from the storage compartment, the main door having a rear part, a side part, and a front part, a sub door provided to open and close the opening of the main door, the sub door having a rear part, a side part, and a front part, a gasket provided along an edge of the rear part of the sub door, the gasket coming contact with the front part of the main door to seal the interior of the main door when the sub door is closed, and a heat transfer member extending from the inside of the side part to the inside of the front part of the main door to conduct heat from the side part of the main door to the front part of the main door, with which the gasket selectively comes into contact, so that dew is prevented from being formed on the front part of the main door.
The heat transfer member may be formed by extending an outer door, made of a metal material, constituting an outside of the side part of the main door to the front part of the main door, with which the gasket selectively comes into contact.
The heat transfer member may extend to an inside of the front part of the main door.
The heat transfer member may include an separate heat transfer body connected to an outer side part of the main door.
The heat transfer member may include a metal tape extending along the inside of a door liner constituting the front part of the main door in a bent state.
The metal tape may be made of an aluminum material.
A portion of an inner side part of the main door may form an inclined surface, and a door liner constituting the inclined surface of the main door may include a first heat blocking part formed so that the thickness of a portion of the inclined surface is less than that of the remaining portion of the inclined surface.
A door liner constituting the front part of the main door may include a second heat blocking part formed so that the thickness of a portion contacting the gasket is less than that of the remaining portion of the door liner.
The rear part of the sub door may include an inclined surface opposite to the inclined surface of the main door, and a door liner constituting the inclined surface of the sub door may be provided at a position opposite to the first heat blocking part with a third heat blocking part formed so that the thickness of a portion of the inclined surface is less than that of the remaining portion of the inclined surface.
The sub door may be formed such that at least one side of the sub door has the same plane as a corresponding side of the main door.
Any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” etc., means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with any embodiment, it is submitted that it is within the purview of one skilled in the art to effect such feature, structure, or characteristic in connection with other ones of the embodiments.
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
10-2011-0069929 | Jul 2011 | KR | national |
This application claims priority under 35 U.S.C. §119 to Korean Application No. 10-2011-0069929 filed on Jul. 14, 2011, whose entire disclosure is hereby incorporated by reference.