REFRIGERATOR

Information

  • Patent Application
  • 20230194144
  • Publication Number
    20230194144
  • Date Filed
    April 21, 2021
    3 years ago
  • Date Published
    June 22, 2023
    a year ago
Abstract
The present disclosure relates to a refrigerator. The refrigerator according to one embodiment of the present disclosure comprises: an evaporator; a defrosting heater; a temperature sensor; and a controller to control the defrosting heater. The controller is configured to: in response to a defrosting operation starting time arriving, perform a defrosting operation mode including a pre-defrosting cooling mode, a heater operation mode and a post-defrosting cooling mode; perform a continuous operation mode, in which the defrosting heater is continuously on; and when a temperature change rate sequentially increases, decreases and increases again, perform a pulse operation mode, in which the defrosting heater is repeatedly turned on and off. Accordingly, defrosting efficiency may be improved, and power consumption may be reduced.
Description
BACKGROUND
Field of the Disclosure

The present disclosure relates to a refrigerator, and more particularly, to a refrigerator capable of improving defrosting efficiency and power consumption.


Description of the Related Art

For long-term storage of foods in a refrigerator, a refrigerator temperature is reduced using a compressor and an evaporator. For example, a freezer compartment in the refrigerator is maintained at a temperature of approximately −18° C.


Meanwhile, in order to improve refrigerator performance, it is desirable to remove frost which may be on the evaporator when the evaporator operates.


Korean Patent Application Laid-Open No. 10-2001-0026176 (hereinafter, referred to as Prior Document 1) relates to a method for controlling a defrost heater of a refrigerator, in which the defrost heater is turned on when a certain time for defrosting arrives, and turned off after the lapse of a certain period of time.


However, according to Prior Document 1, since the ON time and the OFF time of the defrost heater are based on a certain time or a predetermined time, defrosting is not performed according to the actual amount of frost of an evaporator. That is, when the amount of frost is large, defrosting is not performed properly, or when the amount of frost is small, unnecessary defrosting is performed, thereby unnecessarily consuming power.


U.S. Patent Publication No. US6694754 (hereinafter, referred to as Prior Document 2) relates to a refrigerator having a pulse-based defrost heater, disclosing that the On and off time of a defrost heater is determined based on time.


According to Prior Document 2, since the ON time and the OFF time of the defrost heater are determined based on time, defrosting is not performed according to the actual amount of frost of an evaporator. That is, when the amount of frost is large, defrosting is not performed properly, or when the amount of frost is small, unnecessary defrosting is performed, thereby unnecessarily consuming power.


Korean Patent Application Laid-Open No. 10-2016-0053502 (hereinafter, referred to as Prior Document 3) relates to a defrosting device, a refrigerator having the same, and a control method of the defrosting device, in which the On and off time of a defrost heater determined based on time or time and temperature.


According to Prior Document 3, since the ON time and the OFF time of the defrost heater are determined based on time or time and temperature, defrosting is not performed according to the actual amount of frost of an evaporator. That is, when the amount of frost is large, defrosting is not performed properly, or when the amount of frost is small, unnecessary defrosting is performed, thereby unnecessarily consuming power.


SUMMARY

An aspect of the present disclosure provides a refrigerator capable of improving defrosting efficiency and power consumption.


In an aspect, a refrigerator includes: an evaporator configured to perform heat exchange; a defrost heater configured to operate to remove frost formed on the evaporator; a temperature sensor configured to detect an ambient temperature of the evaporator; and a controller configured to control the defrost heater, in which, in response to a defrosting operation start time point arriving, the controller is configured to perform a defrost operation mode including a pre-defrost cooling mode, a heater operation mode, and a post-defrost cooling mode, perform a continuous operation mode in which the defrost heater is continuously turned on based on the heater operation mode, and in response to a temperature change rate detected by the temperature sensor sequentially increasing, decreasing, and increasing again while performing the continuous operation mode, perform a pulse operation mode, in which the defrost heater is repeatedly turned on and off.


In response to a temperature change rate detected by the temperature sensor sequentially increasing, decreasing, and increasing again while performing the continuous operation mode, after a predetermined time elapses, the controller may be configured to perform the pulse operation mode after the defrost heater is turned off.


In response to the temperature change rate detected by the temperature sensor being between a first reference value and a second reference value while performing the pulse operation mode, the controller may be configured to continuously perform the pulse operation mode.


In response to the temperature change rate detected by the temperature sensor being between the first reference value and the second reference value while performing the pulse operation mode, the controller may perform the pulse operation mode and sequentially decrease an ON period of the defrost heater.


The controller may be configured to terminate the pulse operation mode and turn off the defrost heater in response to exceeding the first reference value while performing the pulse operation mode.


The controller may be configured to terminate the pulse operation mode and perform the continuous operation mode again in response to less than the second reference value while performing the pulse operation mode.


In response to performing the continuous operation mode again, the controller may be configured to control a duration of the continuous operation mode to be less than a duration of the continuous operation mode before the pulse operation mode.


In response to the defrosting operation start time point arriving while performing the normal cooling operation mode, the controller may perform the defrost operation mode including the pre-defrosting cooling mode, the heater operation mode, and the post-defrosting cooling mode, and perform the continuous operation mode of the defrost heater, and the pulse operation mode, in which the defrost heater is repeatedly turned on and off, based on the heater operation mode.


The controller may be configured to, as the number of opening times of the cooling compartment door increases, decrease a duration of the defrost operation mode.


The controller may be configured to control a peak temperature arrival time point of the evaporator in response to the continuous operation mode and the pulse operation mode being performed in the defrost operation mode to be later than the peak temperature arrival time point of the evaporator in response to the defrost heater being only continuously turned on in the defrost operation mode.


The controller may be configured to control a size of a second section related to temperature versus time between the defrost end temperatures at a phase change temperature in response to the continuous operation mode and the pulse operation mode being performed in the defrost operation mode to be greater than a size of a first section related to temperature versus time between the defrost end temperatures at the phase change temperature in response to the defrost heater being only continuously turned on.


The controller may be configured to control an effective defrost in response to the continuous operation mode and the pulse operation mode being performed in the defrost operation mode to be larger than the effective defrost in response to the defrost heater being only continuously performed in the defrost operation mode.


The controller may be configured to control a heater OFF time point in response to the continuous operation mode and the pulse operation mode being performed in the defrost operation mode to be later than the heater OFF time point in response to the defrost heater being only continuously turned on in the defrost operation mode.


The controller may be configured to control a size of an overheat temperature region higher than the defrosting end temperature in response to the continuous operation mode and the pulse operation mode being performed in the defrost operation mode to be less than a size of the overheat temperature region higher than the defrost end temperature in response to the defrost heater being only continuously performed in the defrost operation mode.


The controller may be configured to control a cooling power supply time point according to a normal cooling operation mode in response to the continuous operation mode and the pulse operation mode being performed in the defrost operation mode to be later than the cooling power supply time point according to the normal cooling operation mode in response to the defrost heater being only continuously turned on in the defrost operation mode.


In another aspect, a refrigerator includes: an evaporator configured to perform heat exchange; a defrost heater configured to operate to remove frost formed on the evaporator; a temperature sensor configured to detect an ambient temperature of the evaporator; and a controller configured to control the defrost heater, in which, in response to a defrosting operation start time point arriving, the controller is configured to perform a defrost operation mode including a pre-defrost cooling mode, a heater operation mode, and a post-defrost cooling mode, perform a continuous operation mode in which the defrost heater is continuously turned on based on the heater operation mode, and after the continuous operation mode ends, before the pulse operation mode in which the defrost heater is repeatedly turned on and off, in response to the temperature detected by the temperature sensor reaching the defrosting end temperature, the controller is configured to turn on and off the defrost heater at least once after the defrosting end temperature arrives.


The controller may be configured to terminate the heater operation mode after performing the turn on and off at least once, and perform the post-defrost cooling mode.


The controller may be configured to turn off the defrost heater in response to the temperature detected by the temperature sensor reaching the defrosting end temperature during the continuous operation mode.


The controller may be configured to perform a pulse operation mode in which the defrost heater is repeatedly turned on and off after the continuous operation mode ends, and turn off the defrost heater in response to the temperature detected by the temperature sensor reaching the defrosting end temperature during the continuous operation mode.


EFFECTS OF THE INVENTION

A refrigerator according to an embodiment of the present disclosure includes: an evaporator configured to perform heat exchange; a defrost heater configured to operate to remove frost formed on the evaporator; a temperature sensor configured to detect an ambient temperature of the evaporator; and a controller configured to control the defrost heater, in which, in response to a defrosting operation start time point arriving, the controller is configured to perform a defrost operation mode including a pre-defrost cooling mode, a heater operation mode, and a post-defrost cooling mode, perform a continuous operation mode in which the defrost heater is continuously turned on based on the heater operation mode, and in response to a temperature change rate detected by the temperature sensor sequentially increasing, decreasing, and increasing again while performing the continuous operation mode, perform a pulse operation mode, in which the defrost heater is repeatedly turned on and off. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption. In particular, since the defrosting is performed according to the amount of frost of the actual evaporator, it is possible to improve defrosting efficiency and power consumption.


Meanwhile, in response to a temperature change rate detected by the temperature sensor sequentially increasing, decreasing, and increasing again while performing the continuous operation mode, after a predetermined time elapses, the controller may be configured to perform the pulse operation mode after the defrost heater is turned off. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


Meanwhile, in response to the temperature change rate detected by the temperature sensor being between a first reference value and a second reference value while performing the pulse operation mode, the controller may be configured to continuously perform the pulse operation mode. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


Meanwhile, in response to the temperature change rate detected by the temperature sensor being between the first reference value and the second reference value while performing the pulse operation mode, the controller may perform the pulse operation mode and sequentially decrease an ON period of the defrost heater. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


Meanwhile, the controller may be configured to terminate the pulse operation mode and turn off the defrost heater in response to exceeding the first reference value while performing the pulse operation mode. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


Meanwhile, the controller may be configured to terminate the pulse operation mode and perform the continuous operation mode again in response to less than the second reference value while performing the pulse operation mode. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


Meanwhile, in response to performing the continuous operation mode again, the controller may be configured to control a duration of the continuous operation mode to be less than a duration of the continuous operation mode before the pulse operation mode. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


Meanwhile, in response to the defrosting operation start time point arriving while performing the normal cooling operation mode, the controller may perform the defrost operation mode including the pre-defrosting cooling mode, the heater operation mode, and the post-defrosting cooling mode, and perform the continuous operation mode of the defrost heater, and the pulse operation mode, in which the defrost heater is repeatedly turned on and off, based on the heater operation mode. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


Meanwhile, the controller may be configured to, as the number of opening times of the cooling compartment door increases, decrease a duration of the defrost operation mode. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


Meanwhile, the controller may be configured to control a peak temperature arrival time point of the evaporator in response to the continuous operation mode and the pulse operation mode being performed in the defrost operation mode to be later than the peak temperature arrival time point of the evaporator in response to the defrost heater being only continuously turned on in the defrost operation mode. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


The controller may be configured to control a size of a second section related to temperature versus time between the defrost end temperatures at a phase change temperature in response to the continuous operation mode and the pulse operation mode being performed in the defrost operation mode to be greater than a size of a first section related to temperature versus time between the defrost end temperatures at the phase change temperature in response to the defrost heater being only continuously turned on. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


Meanwhile, the controller may be configured to control such that an effective defrost in response to the continuous operation mode and the pulse operation mode being performed in the defrost operation mode to be larger than the effective defrost in response to the defrost heater being only continuously performed in the defrost operation mode.


Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


Meanwhile, the controller may be configured to control a heater OFF time point in response to the continuous operation mode and the pulse operation mode being performed in the defrost operation mode to be later than the heater OFF time point in response to the defrost heater being only continuously turned on in the defrost operation mode. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


Meanwhile, the controller may be configured to control a size of an overheat temperature region higher than the defrosting end temperature in response to the continuous operation mode and the pulse operation mode being performed in the defrost operation mode to be less than a size of the overheat temperature region higher than the defrost end temperature in response to the defrost heater being only continuously performed in the defrost operation mode. Accordingly, it is possible to improve the defrosting efficiency and power consumption in response to performing the continuous operation mode and the pulse operation mode.


Meanwhile, the controller may be configured to control a cooling power supply time point according to a normal cooling operation mode in response to the continuous operation mode and the pulse operation mode being performed in the defrost operation mode to be later than the cooling power supply time point according to the normal cooling operation mode in response to the defrost heater being only continuously turned on in the defrost operation mode. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption. Accordingly, it is possible to improve the defrosting efficiency and power consumption in response to performing the continuous operation mode and the pulse operation mode.


Meanwhile, after the continuous operation mode ends, before the pulse operation mode in which the defrost heater is repeatedly turned on and off, in response to the temperature detected by the temperature sensor reaching the defrosting end temperature, the controller may be configured to turn on and off the defrost heater at least once after the defrosting end temperature arrives. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption. In particular, since the defrosting is performed according to the amount of frost of the actual evaporator, it is possible to improve defrosting efficiency and power consumption.


A refrigerator according to an embodiment of the present disclosure includes: an evaporator configured to perform heat exchange; a defrost heater configured to operate to remove frost formed on the evaporator; a temperature sensor configured to detect an ambient temperature of the evaporator; and a controller configured to control the defrost heater, in which, in response to a defrosting operation start time point arriving, the controller is configured to perform a defrost operation mode including a pre-defrost cooling mode, a heater operation mode, and a post-defrost cooling mode, perform a continuous operation mode in which the defrost heater is continuously turned on based on the heater operation mode, and after the continuous operation mode ends, before the pulse operation mode in which the defrost heater is repeatedly turned on and off, in response to the temperature detected by the temperature sensor reaching the defrosting end temperature, the controller is configured to turn on and off the defrost heater at least once after the defrosting end temperature arrives. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption. In particular, since the defrosting is performed according to the amount of frost of the actual evaporator, it is possible to improve defrosting efficiency and power consumption.


Meanwhile, the controller may be configured to terminate the heater operation mode after performing the turn on and off at least once, and perform the post-defrost cooling mode. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


Meanwhile, the controller may be configured to turn off the defrost heater in response to the temperature detected by the temperature sensor reaching the defrosting end temperature during the continuous operation mode. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


Meanwhile, the controller may be configured to perform a pulse operation mode in which the defrost heater is repeatedly turned on and off after the continuous operation mode ends, and turn off the defrost heater in response to the temperature detected by the temperature sensor reaching the defrosting end temperature during the continuous operation mode. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view illustrating a refrigerator according to an embodiment of the present disclosure;



FIG. 2 is a perspective view of a door of the refrigerator of FIG. 1;



FIG. 3 is a view schematically illustrating a configuration of the refrigerator of FIG. 1;



FIG. 4 is a block diagram schematically illustrating the inside of the refrigerator shown in FIG. 1;



FIG. 5A is a perspective view illustrating an example of an evaporator associated with the present disclosure;



FIG. 5B is a diagram referenced in the description of FIG. 5A;



FIG. 6 is a flowchart illustrating a method of operating a refrigerator according to an embodiment of the present disclosure;



FIGS. 7A to 13 are diagrams referenced in the description of FIG. 6;



FIG. 14 is a flowchart illustrating a defrosting method according to another embodiment of the present disclosure;



FIGS. 15A to 15D are diagrams referenced in the description of FIG. 14;



FIG. 16 is a flowchart illustrating a defrosting method according to another embodiment of the present disclosure; and FIGS. 17A and 17B are diagrams referenced in the description of FIG. 16.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Hereinafter, the present disclosure will be described in further detail with reference to the accompanying drawings.


The suffixes “module” and “unit” in elements used in description below are given only in consideration of ease in preparation of the specification and do not have specific meanings or functions. Therefore, the suffixes “module” and “unit” may be used interchangeably.



FIG. 1 is a perspective view illustrating a refrigerator according to an embodiment of the present disclosure.


Referring to the drawings, a refrigerator 100 according to an embodiment of the present disclosure forms a rough outer shape by a case 110 having an internal space divided, although not shown, into a freezer compartment and a refrigerating compartment, a freezer compartment door 120 that shields the freezer compartment, and a refrigerator door 140 to shield the refrigerating compartment.


In addition, the front surface of the freezer compartment door 120 and the refrigerating compartment door 140 is further provided with a door handle 121 protruding forward, a user easily grips and rotates the freezer compartment door 120 and the refrigerating compartment door 140.


Meanwhile, the front surface of the refrigerating compartment door 140 may be further provided with a home bar 180 which is a convenient means for allowing a user to take out a storage such as a beverage contained therein without opening the refrigerating compartment door 140.


In addition, the front surface of the freezer compartment door 120 may be provided with a dispenser 160 which is a convenient means for allowing the user to easily take out ice or drinking water without opening the freezer compartment door 120, and a control panel 210 for controlling the driving operation of the refrigerator 100 and displaying the state of the refrigerator 100 being operated on a screen may be further provided in an upper side of the dispenser 160.


Meanwhile, in the drawing, it is illustrated that the dispenser 160 is disposed in the front surface of the freezer compartment door 120, but is not limited thereto, and may be disposed in the front surface of the refrigerating compartment door 140.


The control panel 210 may include an input device 220 formed of a plurality of buttons, and a display device 230 for displaying a control screen, an operation state, and the like.


The display device 230 displays information such as a control screen, an operation state, a temperature inside the refrigerator, and the like. For example, the display device 230 may display the set temperature of the freezer compartment and the set temperature of the refrigerating compartment.


The display device 230 may be implemented in various ways, such as a liquid crystal display (LCD), a light emitting diode (LED), an organic light emitting diode (OLED), and the like. In addition, the display device 230 may be implemented as a touch screen capable of serving as the input device 220.


The input device 220 may include a plurality of operation buttons. For example, the input device 220 may include a freezer compartment temperature setting button (not shown) for setting the freezer compartment temperature, and a refrigerating compartment temperature setting button (not shown) for setting the refrigerating compartment temperature. Meanwhile, the input device 220 may be implemented as a touch screen that may also function as the display device 230.


Meanwhile, the refrigerator according to an embodiment of the present disclosure is not limited to a double door type shown in the drawing, but may be a one door type, a sliding door type, a curtain door type, and the like regardless of its type.



FIG. 2 is a perspective view of a door of the refrigerator of FIG. 1.


Referring to the drawing, a freezer compartment 155 is disposed inside the freezer compartment door 120, and a refrigerating compartment 157 is disposed inside the refrigerating compartment door 140.



FIG. 3 is a view schematically illustrating a configuration of the refrigerator of FIG. 1.


Referring to the drawing, the refrigerator 100 may include a compressor 112, a condenser 116 for condensing a refrigerant compressed by the compressor 112, a freezer compartment evaporator 122 which is supplied with the refrigerant condensed in the condenser 116 to evaporate, and is disposed in a freezer compartment (not shown), and a freezer compartment expansion valve 132 for expanding the refrigerant supplied to the freezer compartment evaporator 122.


Meanwhile, in the drawing, it illustrated that a single evaporator is used, but it is also possible to use respective evaporators may be used in the refrigerating compartment and the freezer compartment.


That is, the refrigerator 100 may further include a refrigerating compartment evaporator (not shown) disposed in a refrigerating compartment (not shown), a three-way valve (not shown) for supplying the refrigerant condensed in the condenser 116 to the refrigerating compartment evaporator (not shown) or the freezer compartment evaporator 122, and a refrigerating compartment expansion valve (not shown) for expanding the refrigerant supplied to the refrigerating compartment evaporator (not shown).


In addition, the refrigerator 100 may further include a gas-liquid separator (not shown) which separates the refrigerant passed through the evaporator 122 into a liquid and a gas.


In addition, the refrigerator 100 may further include a refrigerating compartment fan (not shown) and a freezer compartment fan 144 that suck cold air that passed through the freezer compartment evaporator 122 and blow the sucked cold air into a refrigerating compartment (not shown) and a freezer compartment (not shown) respectively.


In addition, the refrigerator 100 may further include a compressor driver 113 for driving the compressor 112, and a refrigerating compartment fan driver (not shown) and a freezer compartment fan driver 145 for driving the refrigerating compartment fan (not shown) and the freezer compartment 144.


Meanwhile, based on the drawing, since a common evaporator 122 is used for the refrigerating compartment and the freezer compartment, in this case, a damper (not shown) may be installed between the refrigerating compartment and the freezer compartment, and a fan (not shown) may forcibly blow the cold air generated in one evaporator to be supplied to the freezer compartment and the refrigerating compartment.



FIG. 4 is a block diagram schematically illustrating the inside of the refrigerator shown in FIG. 1.


Referring to the drawings, the refrigerator of FIG. 4 includes a compressor 112, a machine room fan 115, the freezer compartment fan 144, a controller 310, a heater 330, a temperature sensor 320, and a memory 240, and an evaporator 122.


In addition, the refrigerator may further include a compressor driver 113, a machine room fan driver 117, a freezer compartment fan driver 145, a heater driver 332, a display device 230, and an input device 220.


The compressor 112, the machine room fan 115, and the freezer compartment fan 144 are described with reference to FIG. 2.


The input device 220 includes a plurality of operation buttons, and transmits a signal for an input freezer compartment set temperature or refrigerating compartment set temperature to the controller 310.


The display device 230 may display an operation state of the refrigerator. Meanwhile, the display device 230 is operable under the control of a display controller (not shown).


The memory 240 may store data necessary for operating the refrigerator.


For example, the memory 240 may store power consumption information for each of the plurality of power consumption devices. In addition, the memory 240 may output corresponding power consumption information to the controller 310 based on the operation of each power consumption device in the refrigerator.


The temperature sensor 320 detects a temperature in the refrigerator and transmits a signal for the detected temperature to the controller 310. Here, the temperature sensor 320 detects the refrigerating compartment temperature and the freezer compartment temperature respectively. In addition, the temperature of each chamber in the refrigerating compartment or each chamber in the freezer compartment may be detected.


In order to control an ON/OFF operation of the compressor 112, the fan 115 or 144, and the heater 330, as shown in the drawing, the controller may be configured to control the compressor driver 113, the fan driver 117 or 145, the heater driver 332 to eventually control the compressor 112, the fan 115 or 144, and the heater 330. Here, the fan driver may be the machine room fan driver 117 or the freezer compartment fan driver 145.


For example, the controller 310 may output a corresponding speed command value signal to the compressor driver 113 or the fan driver 117 or 145 respectively.


The compressor driver 113 and the freezer compartment fan driver 145 described above are provided with a compressor motor (not shown) and a freezer compartment fan motor (not shown) respectively, and each motor (not shown) may be operated at a target rotational speed under the control of the controller 310.


Meanwhile, the machine room fan driver 117 includes a machine room fan motor (not shown), and the machine room fan motor (not shown) may be operated at a target rotational speed under the control of the controller 310.


When such a motor is a three-phase motor, it may be controlled by a switching operation in an inverter (not shown) or may be controlled at a constant speed by using an AC power source intactly. Here, each motor (not shown) may be any one of an induction motor, a Blush less DC (BLDC) motor, a synchronous reluctance motor (synRM) motor, and the like.


Meanwhile, as described above, the controller 310 may be configured to control the overall operation of the refrigerator 100, in addition to the operation control of the compressor 112 and the fan 115 or 144.


For example, as described above, the controller 310 may be configured to control the overall operation of the refrigerant cycle based on the set temperature from the input device 220. For example, the controller 310 may further control a three-way valve (not shown), a refrigerating compartment expansion valve (not shown), and a freezer compartment expansion valve 132, in addition to the compressor driver 113, the refrigerating compartment fan driver 143, and the freezer compartment fan driver 145. In addition, the operation of the condenser 116 may also be controlled. In addition, the controller 310 may be configured to control the operation of the display device 230.


Meanwhile, the cold air heat-exchanged in the evaporator 122 may be supplied to the freezer compartment or the refrigerating compartment by a fan or a damper (not shown).


Meanwhile, the heater 330 may be a freezer compartment defrost heater. For example, when only one freezer compartment evaporator 122 is used in the refrigerator 100, the freezer compartment defrost heater 330 may operate to remove frost attached to the freezer compartment evaporator 122. To this end, the heater driver 332 may be configured to control the operation of the heater 330. Meanwhile, the controller 310 may be configured to control the heater driver 332.


Meanwhile, the heater 330 may include a freezer compartment defrost heater and a refrigerating compartment defrost heater. For example, when the freezer compartment evaporator 122 and the refrigerating compartment evaporator (not shown) are separately used in the refrigerator 100, the freezer compartment defrost heater 330 may operates to remove frost attached to the freezer compartment evaporator 122, and the refrigerating compartment defrost heater (not shown) may operate to remove frost attached to the refrigerating compartment evaporator. To this end, the heater driver 332 may be configured to control the operations of the freezer compartment defrost heater 330 and the refrigerating compartment defrost heater.



FIG. 5A is a perspective view illustrating an example of an evaporator related to the present disclosure, and FIG. 5B is a diagram referenced in the description of FIG. 5A.


First, referring to FIG. 5A, the evaporator 122 in the refrigerator 100 may be a freezer compartment evaporator as described above with reference to FIG. 2.


A sensor mounter 400 including a temperature sensor 320 may be attached to the evaporator 122 in the refrigerator 100.


In the drawing, it is illustrated that a sensor mounter 400 is attached to an upper cooling pipe of the evaporator 122 in the refrigerator 100.


The evaporator 122 includes a cooling pipe 131 extending from one side of the accumulator 134 and a support 133 supporting the cooling pipe 131.


The cooling pipe 131 may be repeatedly bent in a zigzag manner to form multiple rows and may be filled with a refrigerant.


Meanwhile, the defrost heater 330 for defrosting may be disposed in the vicinity of the cooling pipe 131 of the evaporator 122.


In the drawing, it is illustrated that the defrost heater 330 is disposed in the vicinity of the cooling pipe 131 in a lower region of the evaporator 122.


For example, since frost ICE is formed from a lower region of the evaporator 122 and grows in an upward direction, and thus, preferably, the defrost heater 330 may be disposed in the vicinity of the cooling pipe 131 in the lower region of the evaporator 122.


Accordingly, as shown in the drawing, the defrost heater 330 may be disposed in a shape surrounding the cooling pipe 131 of the lower region of the evaporator 122.


Meanwhile, FIG. 5B illustrates frost ICE is attached to the evaporator 122.


In the drawing, it is illustrated that frost ICE is attached to a central portion and a lower portion of the evaporator 122.


In particular, in the drawing, it is illustrated that frost ICE is formed on the defrost heater 330 to cover the defrost heater 330.


Meanwhile, when the defrost heater 330 operates, frost ICE is removed from the lower region of the evaporator 122 and may be gradually removed in the direction of the central region.


Meanwhile, in the present disclosure, a method for improving defrosting efficiency and power consumption when removing frost ICE, that is, defrosting, is proposed. This will be described with reference to FIG. 6 and the following drawings.



FIG. 6 is a flowchart illustrating a method of operating a refrigerator according to an embodiment of the present disclosure.


Referring to the drawings, the controller 310 of the refrigerator 100 according to an embodiment of the present disclosure determines whether a defrosting operation start time point for defrosting arrives (S610).


For example, the controller 310 of the refrigerator 100 may determine whether a defrosting operation start time point arrives while performing a normal cooling operation mode Pga.


The defrosting operation start time point may vary according to a defrost cycle.


For example, when the number of opening times a door of the cooling compartment (the refrigerating compartment or the freezer compartment) increases, the amount of cold air supplied in the normal cooling operation mode increases, and accordingly, a rate at which frost is formed on the evaporator 122 may increase.


Accordingly, when the number of opening times the door of the cooling compartment (the refrigerating compartment or the freezer compartment) increases, the controller 310 of the refrigerator 100 may be configured to control such that a defrost cycle is shortened.


That is, when the number of opening times the door of the cooling compartment (the refrigerating compartment or the freezer compartment) increases, the controller 310 of the refrigerator 100 may be configured to control the defrosting operation start time point to be shortened.


Meanwhile, when a defrosting operation start condition is satisfied, for example, in response to a defrosting operation start time point arriving, the controller 310 of the refrigerator 100 may be configured to terminate the normal cooling operation mode, control to perform a defrost operation mode Pdf, and control the defrost heater 330 to be continuously turned on based on a heater operation mode PddT in the defrost operation mode Pdf (S615).


Next, the controller 310 of the refrigerator 100 may be configured to perform a pulse operation mode in which the defrost heater 330 is repeatedly turned on and off by a heater pulse after the defrost heater 330 is continuously turned on (S620).


For example, when the defrost operation start condition is satisfied, the controller 310 of the refrigerator 100 may be configured to perform the defrost operation mode Pdf including a pre-defrost cooling mode Pbd, a heater operation mode PddT, and a post-defrost cooling mode pbf.


Also, based on the heater operation mode PddT, based on the defrost operation mode pdf, the controller may be configured to perform a continuous operation mode Pona in which the defrost heater 330 is continuously turned on and a pulse operation mode Ponb in which the defrost heater 330 is repeatedly turned on and off.


Meanwhile, the controller 310 controls the defrost heater 330 to be continuously turned on based on the continuous operation mode Pona, and in the ON state of the defrost heater 330, when a change rate of an ambient temperature of the evaporator 122 detected by the temperature sensor 320 is equal to or greater than a first reference value ref1, the controller 310 may enter the pulse operation mode Ponb to control the defrost heater 330 to be turned off. Accordingly, defrosting efficiency and power consumption may be improved.


Meanwhile, the controller 310 of the refrigerator 100 may be configured to control the defrost heater 330 to be turned on and off based on a change rate of the temperature detected by the temperature sensor 320 when the pulse operation mode Ponb is performed.


For example, in response to performing the pulse operation mode Ponb, if the change rate of the temperature detected by the temperature sensor 320 is equal to or greater than the first reference value ref1, the controller 310 of the refrigerator 100 may be configured to control the defrost heater 330 to be turned off, and if the change rate of the temperature detected by the temperature sensor 320 is less than or equal to a second reference value ref2 less than the first reference value ref1, the controller 310 may be configured to control the defrost heater 330 to be turned on. Accordingly, since defrosting may be performed based on a change rate ΔT of the temperature, defrosting efficiency and power consumption may be improved.


Next, the controller 310 of the refrigerator 100 determines whether a pulse operation mode end time point arrives (S630), and if pulse operation mode end time point arrives, the controller 310 turn off the defrost heater 330 (S640).


For example, the pulse operation mode end time point may be a time point at which the temperature detected by the temperature sensor 320 falls below a phase-change temperature Trf1.


As another example, the pulse operation mode end time point may be an end time point of the defrosting operation or an end time point of the heater operation mode.


As such, the continuous operation mode Pona in which the defrost heater 330 is continuously turned on and the pulse operation mode in which the defrost heater 330 is repeatedly turned on and off are controlled to be performed based on the change rate of the temperature detected by the temperature sensor 320, defrosting efficiency and power consumption may be improved by performing defrosting based on the change rate ΔT of the temperature.


In particular, since defrosting is performed according to the actual amount of frost of the evaporator 122, defrosting efficiency and power consumption may be improved.



FIGS. 7A to 13 are diagrams referenced in the description of FIG. 6.


First, FIG. 7A is a diagram illustrating a defrost heater HT and a switching element RL for driving a defrost heater when one evaporator and one defrost heater are used in the refrigerator 100.


Referring to the drawing, when only one freezer compartment evaporator 122 is used in the refrigerator 100, the freezer compartment defrost heater HT may operate to remove frost attached to the freezer compartment evaporator 122.


To this end, the switching element RL in the heater driver 332 may be configured to control the operation of the defrost heater HT. In this case, the switching element RL may be a relay element.


That is, when the switching element RL is continuously turned on, the continuous operation mode Pona in which the defrost heater HT is continuously turned on may be performed, and when the switching element RL is switched On and off, the pulse operation mode Ponb in which the defrost heater HT is repeatedly turned on and off may be performed.


Next, FIG. 7B is a diagram illustrating defrost heaters HTa and HTb and switching elements RLa and Rlb for driving the defrost heaters when two evaporators and two defrost heaters are used in the refrigerator 100.


When a first defrost heater HTa is a freezer compartment defrost heater, a first switching element RLa in the heater driver 332 may be configured to control the operation of the first defrost heater HTa. In this case, the first switching element RLa may be a relay element.


That is, when the first switching element RLa is continuously turned on, the continuous operation mode Pona in which the first defrost heater HTa is continuously turned on may be performed, and when the first switching element RLa performs On and off switching, the pulse operation mode Ponb in which the first defrost heater HTa is repeatedly turned on and off may be performed.


When a second defrost heater HTb is a refrigerating compartment defrost heater, a second switching element RLb in the heater driver 332 may be configured to control the operation of the second defrost heater HTb. In this case, the second switching element RLb may be a relay element.


That is, when the second switching element RLb is continuously turned on, the continuous operation mode Ponb in which the second defrost heater HTb is continuously turned on may be performed, and when the second switching element RLb performs On and off switching, the pulse operation mode Ponb in which the second defrost heater HTb is repeatedly turned on and off may be performed.


Meanwhile, On and off timings of the first switching element RLa and the second switching element RLb may be different from each other. Accordingly, it is possible to perform the defrosting of the freezer compartment evaporator and the defrosting of the refrigerating compartment evaporator, separately.



FIG. 8A is a diagram illustrating an example of a pulse waveform indicating an operation of one defrost heater of FIG. 7A.


Referring to the drawings, the horizontal axis of the pulse waveform Psh may represent time and the vertical axis may represent a level.


When the defrosting cloud base start time To arrives, while performing the normal cooling operation mode Pga, the controller 310 of the refrigerator 100 may be configured to terminate the normal cooling operation mode Pga and control to perform the defrost operation mode pdf.


The defrost operation mode pdf may include a pre-defrost cooling mode Pbd between Toa and Ta, a heater operation mode PddT between Ta and Td, and a post-defrost cooling mode pbf between Td and Te.


Meanwhile, after the defrost operation mode pdf is ended, the normal cooling operation mode Pgb is performed again.


The defrost heater 330 is turned off in the normal cooling operation mode Pga and the normal cooling operation mode Pgb.


Meanwhile, the defrost heater 330 may be turned off in the pre-defrost cooling mode Pbd and the post-defrost cooling mode pbf of the defrost operation mode Pdf.


Meanwhile, the defrost heater 330 may be continuously turned on in the continuous operation mode Pona of the heater operation mode PddT, and may be repeatedly turned on and off in the pulse operation mode Ponb of the heater operation mode PddT.


The continuous operation mode Pona may be performed between Ta and Tb, and the pulse operation mode Ponb may be performed between Tb and Tc.


When only the continuous operation mode is performed and the defrost heater 330 is continuously turned on, if the amount of frost is large, defrosting may not be performed properly or if the amount of frost is small, unnecessary defrosting may be performed, and thus, unnecessary power consumption may be consumed.


Accordingly, in the present disclosure, the continuous operation mode Pona and the pulse operation mode Ponb are used in combination. Accordingly, defrosting efficiency and power consumption may be improved.



FIG. 8B is a diagram illustrating an example of a pulse waveform indicating an operation of two defrost heaters of FIG. 7B.


Referring to the drawing, (a) of FIG. 8B shows a pulse waveform Psha indicating an operation of the freezer compartment defrost heater, and (b) of FIG. 8B shows a pulse waveform Pshb indicating an operation of the refrigerating compartment defrost heater.


The pulse waveform Psha of (a) of FIG. 8B may be the same as the pulse waveform Psh of FIG. 8A.


Meanwhile, since less frost may occur in the refrigerating compartment evaporator than in the freezer compartment evaporator, an operating section of the refrigerating compartment defrost heater may be less than an operating section of the freezer compartment defrost heater.


Referring to the pulse waveform Pshb of (b) of FIG. 8B, a period of continuously turning on in the continuous operation mode Pona in the heater operation mode PddT may be less than a period of the pulse waveform Psha of (a) of FIG. 8B.


In addition, referring to the pulse waveform Pshb of (b) of FIG. 8B, an ON/OFF repetition period of the pulse operation mode Ponb in the heater operation mode PddT may be less than the pulse waveform Psha of (a) of FIG. 8B.



FIG. 9 is a diagram illustrating an example of cooling power supply and a defrost heater operation in the defrost operation mode Pdf of FIG. 8A.


Referring to the drawing, the defrost operation mode pdf may include a pre-defrost cooling mode Pbd between To and Ta, a heater operation mode PddT between Ta and Td, and a post-defrost cooling mode pbf between Td and Te.


During a period To to T1 of the pre-defrost cooling mode Pbd, a level of supplied cooling power may be an R level, and during a period T1 to T2, a level of cooling power may be an F level greater than the R level.


Also, during a period T2 to T3 of the pre-defrost cooling mode Pbd, the cooling power supply may be stopped.


In addition, during a period T3 to Ta in the pre-defrost cooling mode Pbd, a level of supplied cooling power may be the R level.


According to the pre-defrost cooling mode Pbd, cooling power supply for compensating for the stoppage of cooling power supply during the heater operation mode PddT is performed.


Meanwhile, the cooling power supply may be performed by a compressor, a thermoelectric element, or the like, and in the drawings, it is illustrated that the cooling power supply is performed by an operation of the compressor.


During a period To to T2 and T3 to Ta in which cooling power is supplied, the compressor operates, and during a period T2 to T3 in which cooling power is not supplied, the compressor is turned off.


Meanwhile, during a period To to T1 in which the R level cooling power is supplied, the refrigerating compartment fan may operate and the freezer compartment fan may be turned off.


Meanwhile, during a period from a time point T1, at which the F level cooling power is supplied, to a time point Ta, at which the pre-defrost cooling mode Pbd is ended, the refrigerating compartment fan may be turned off and the freezer compartment fan may be operated.


Meanwhile, during the period T2 to Ta, the defrost heater 330 should be maintained in an OFF state.


Next, the defrost heater 330 may operate during the period of Ta to Tc in the period of Ta to Td of the heater operation mode PddT.


As shown in FIG. 8A, the continuous operation mode Pona may be performed during the period of Ta and Tb of the heater operation mode PddT period, and the heater operation mode PddT may be performed during the Tb and Tc periods.


Meanwhile, the defrost heater 330 may be turned off from Tc, which is an end time point of the continuous operation mode Pona, to Td.


Meanwhile, during the period of the heater operation mode PddT, the compressor and the refrigerating compartment fan may be turned off.


Meanwhile, during the period of the heater operation mode PddT, the freezer compartment fan may be turned off. In particular, it is preferable that the freezer compartment fan is turned off from Tc, which is the end time point of the continuous operation mode Pona, to Td.


After the heater operation mode PddT, the post-defrost cooling mode Pbf is performed.


During the period of Td to T4 in the post-defrost cooling mode Pbf, a level of the supplied cooling power may be an R+F level, and the largest level of cooling power may be supplied.


In addition, during the period of T4 to T6 in the post-defrost cooling mode Pbf, a level of the supplied cooling power may be F level, and the cooling power supply may be stopped during the period T6 to Te.


According to the post-defrost cooling mode Pbf, the largest level of cooling power supply may be performed according to the stopping of the cooling power supply during the heater operation mode PddT.


During the period of Td to T6 in which cooling power is supplied, the compressor operates, and the compressor is turned off during the period of T6 to Te in which cooling power is not supplied.


Meanwhile, during the period of Td to 14 in which the R +F level of cooling power is supplied, the refrigerating compartment fan and the freezer compartment fan may be turned off together.


Meanwhile, during the period of 14 to T6 in which the F level cooling power is supplied, the refrigerating compartment fan may be turned off and the freezer compartment fan may be operated.


Meanwhile, the level of power consumption in the heater operation mode PddT in FIG. 9 may be greater than the level of power consumption of the R+F level cooling power.



FIG. 10 is a diagram illustrating temperature change waveforms of an evaporator in response to the defrost heater being operated only in the continuous operation mode and in response to the continuous operation mode and the pulse operation mode being mixed.


In particular, in (a) of FIG. 10, CVa represents a temperature change waveform in response to the defrost heater being operated only in the continuous operation mode, and CVb represents a temperature change waveform in response to the defrost heater being operated by mixing the continuous operation mode and the pulse operation mode.


According to CVa, the defrost heater 330 is continuously turned on, and may be turned off at a time point Tx, as shown in (b) of FIG. 10.


According to CVb, the defrost heater 330 operates during the Pohm period, as shown in (c) of FIG. 10.


That is, during the Ponm period including up to a Tpa time point, the continuous operation mode is performed, and the pulse operation mode is performed during a Pofn period from Tpa to Tpb.


Trf1 represents a phase-change temperature, and may be, for example, 0° C. Meanwhile, Trf2 represents a defrost end temperature, for example, may be 5° C.


Meanwhile, a region between Trf1 and Trf2 may indicate a defrosting region in which defrosting is actually performed, and a region exceeding Trf2 may indicate an overheating region in which excessive defrosting is performed.


In order to actually effectively perform defrosting, it is preferable that a size of the overheating region is reduced and a size of the defrosting region is increased.


Accordingly, in the present disclosure, the continuous operation mode and the pulse operation mode of the defrost heater 300 are mixed in order to reduce the size of the overheating region and increase the size of the defrosting region.


Meanwhile, the controller 310 may be configured to control a peak temperature arrival point Qd of the evaporator 122 when the continuous operation mode Pona and the pulse operation mode Ponb are performed in the defrost operation mode Pdf to be later than a peak temperature arrival point Qc of the evaporator 122 when the defrost heater 330 is only continuously turned on in the defrost operation mode Pdf. Accordingly, it is possible to improve the defrosting efficiency and power consumption when the continuous operation mode Pona and the pulse operation mode Ponb are performed.


Meanwhile, the controller 310 may be configured to control a size of a second section Arbb related to a temperature versus time between a phase-change temperature Trf1 and a defrost end temperature Trf2 in response to the continuous operation mode and the pulse operation mode being performed in the defrost operation mode Pdf to be greater than a size of a first section Arab related to a temperature versus time between the phase-change temperature Trf1 and the defrost end temperature Trf2 in response to the defrost heater being only continuously turned on in the defrost operation mode Pdf. Accordingly, it is possible to improve the defrosting efficiency and power consumption when the continuous operation mode Pona and the pulse operation mode Ponb are performed.


Meanwhile, the controller 310 may be configured to control an effective defrost when the continuous operation mode Pona and the pulse operation mode Ponb are performed in the defrost operation mode Pdf to be greater than an effective defrost when the defrost heater 330 is only continuously turned on in the defrost operation mode Pdf. Accordingly, it is possible to improve the defrosting efficiency and power consumption when the continuous operation mode Pona and the pulse operation mode Ponb are performed.


Meanwhile, the controller 310 may be configured to control a heater OFF time point Tpb when the continuous operation mode Pona and the pulse operation mode Ponb are performed in the defrost operation mode Pdf to be later than a heater OFF time point Tx when the defrost heater 330 is only continuously turned on in the defrost operation mode Pdf. Accordingly, it is possible to improve the defrosting efficiency and power consumption when the continuous operation mode Pona and the pulse operation mode Ponb are performed.


Meanwhile, the controller 310 may be configured to control a period Tpb-Qd between the heater OFF time point Tpb and a peak temperature arrival time Qd of the evaporator 122 when the continuous operation mode Pona and the pulse operation mode Ponb are performed in the defrost operation mode Pdf to be greater than a period Tx-Qc between the heater OFF time point and the peak temperature arrival time Qc of the evaporator 122 when the defrost heater 330 is only continuously turned on in the defrost operation mode Pdf. Accordingly, it is possible to improve the defrosting efficiency and power consumption when the continuous operation mode Pona and the pulse operation mode Ponb are performed.


Meanwhile, the controller 310 may be configured to control a period Tpb-Qh during which a temperature maintains above the phase-change temperature Trf1 when the continuous operation mode Pona and the pulse operation mode Ponb are performed in the defrost operation mode Pdf to be greater than a period Tx-Qg during which a temperature maintains above the phase-change temperature Trf1 when the defrost heater 330 is only continuously turned on in the defrost operation mode Pdf. Accordingly, it is possible to improve the defrosting efficiency and power consumption when the continuous operation mode Pona and the pulse operation mode Ponb are performed


Meanwhile, the controller 310 may be configured to control a period Tpb-Qh between the heater OFF time point Tpb to a time point at which a temperature falls below a phase-change temperature Trf1 when the continuous operation mode Pona and the pulse operation mode Ponb are performed in the defrost operation mode Pdf to be less than a period Tx-Qg between the heater OFF time point Tx to a time point Qg at which the temperature falls below the phase-change temperature Trf1 when the defrost heater 330 is only continuously turned on in the defrost operation mode Pdf. Accordingly, it is possible to improve the defrosting efficiency and power consumption when the continuous operation mode Pona and the pulse operation mode Ponb are performed.


Meanwhile, the controller 310 may be configured to control a size of an overheat temperature region Arba equal to higher than the defrosting end temperature Trf2 when the continuous operation mode Pona and the pulse operation mode Ponb are performed in the defrost operation mode Pdf to be less than an overheat temperature region Araa equal to higher than the defrosting end temperature Trf2 when the defrost heater 330 is only continuously turned on in the defrost operation mode Pdf. Accordingly, it is possible to improve the defrosting efficiency and power consumption when the continuous operation mode Pona and the pulse operation mode Ponb are performed.


In FIG. 10, (d) shows a cooling power supply waveform COa in the case of only continuously turning on the defrost heater 330 and a cooling power supply waveform COb in the case of performing a continuous operation mode Pona and a pulse operation mode Ponb.


Referring to the drawing, the controller 310 may be configured to control a cooling power supply time point Tcb according to a normal cooling operation mode Pga when the continuous operation mode Pona and the pulse operation mode Ponb are performed in the defrost operation mode Pdf to be later than a cooling power supply time point Tca according to the normal cooling operation mode Pga when the defrost heater 330 is only continuously turned on in the defrost operation mode Pdf.


Accordingly, it is possible to improve the defrosting efficiency and power consumption. Accordingly, it is possible to improve the defrosting efficiency and power consumption when the continuous operation mode Pona and the pulse operation mode Ponb are performed.



FIG. 11 is a diagram illustrating an operating method in a pulse operation mode according to an embodiment of the present disclosure.


Referring to the drawing, the controller 310 controls the defrost heater 330 to be turned on based on the heater operation mode, in particular, based on the continuous operation mode (S1115).


Next, the controller 310 calculates a change rate ΔT of a temperature detected by the temperature sensor 320 during the operation of the defrost heater 330, and determines whether the change rate ΔT of the temperature is equal to or greater than a first reference value ref1 (S1120).


For example, when the change rate ΔT of the temperature during the continuous operation of the defrost heater 330 is less than the first reference value ref1, the controller 310 may be configured to control the defrost heater 330 to continuously operate.


Meanwhile, when the change rate ΔT of the temperature during the continuous operation of the defrost heater 330 is equal to or greater than the first reference value ref1, the controller 310 may temporarily turn off the defrost heater 330 (S1125).


Next, the controller 310 calculates the change rate ΔT of the temperature detected by the temperature sensor 320 after the defrost heater 330 is temporarily turned off, and determine whether the change rate ΔT of the temperature is less than or equal to a second reference value ref2 (S1128).


When the change rate ΔT of the temperature detected by the temperature sensor 320 is less than or equal to the second reference value ref2 after the defrost heater 330 is temporarily turned off, the controller 310 is configured to turn on the defrost heater. That is, the controller 310 controls to perform step S1115.


As such, when steps 1115 to 1128 are repeated, the pulse operation mode of the defrost heater 330 is performed.


Meanwhile, in step S1128, after the defrost heater 330 is temporarily turned off, when the change rate ΔT of the temperature exceeds the second reference value ref2, the controller 310 determines a pulse operation mode end condition is met. When the pulse operation mode end condition is met (S1130), the controller 310 ends the pulse operation mode and controls the heater to be turned off (S1140).


The pulse operation mode end condition may correspond to the pulse operation mode time point.


For example, the pulse operation mode end time point may be a time at which the temperature detected by the temperature sensor 320 falls below the phase-change temperature Trf1.


As another example, the pulse operation mode end time point may be an end time point of the defrosting operation or an end time point of the heater operation mode.


Meanwhile, when the defrosting operation start time point To arrives, the controller 310 controls to perform the defrost operation mode Pdf and controls to perform the continuous operation mode Pona in which the defrost heater 330 is continuously turned on and the pulse operation mode Ponb in which the defrost heater 330 is repeatedly turned on and off based on the defrost operation mode Pdf, and in response to performing the pulse operation mode Ponb, the controller is configured to control the defrost heater 330 to be turned on and off based on the change rate ΔT of the temperature detected by the temperature sensor 320. Accordingly, since defrosting may be performed based on the change rate ΔT of the temperature, it is possible to improve defrost efficiency and power consumption.


In particular, since defrosting is performed according to the actual amount of frost ICE of the evaporator 122, it is possible to improve defrost efficiency and power consumption.


Meanwhile, the controller 310 may be configured to perform the continuous operation mode Pona or the pulse operation mode Ponb based on the change rate ΔT of the temperature detected by the temperature sensor 320. Accordingly, it is possible to improve the defrosting efficiency and power consumption.


Meanwhile, the controller 310 may be configured to operate the heater with power inversely proportional to the change rate ΔT of the temperature detected by the sensor during the pulse operation mode Ponb. Accordingly, it is possible to improve the defrosting efficiency and power consumption.


Meanwhile, the controller 310 may be configured to decrease a period of performing the defrost operation mode Pdf as the number of opening times the cooling compartment door increases. Accordingly, it is possible to improve the defrosting efficiency and power consumption.



FIG. 12A is a diagram showing a temperature waveform of the evaporator when there is a large amount of frost formation.


In FIG. 12A, (a), CVma represents a temperature change waveform in response to the defrost heater being operated only in the continuous operation mode, and CVmb represents a temperature change waveform in response to the defrost heater being operated by mixing the continuous operation mode and the pulse operation mode.


According to CVma, the defrost heater 330 may be continuously turned on, and may be turned off at a time point Tmg, as shown in (b) of FIG. 12A.


According to CVmb, as shown in (c) of FIG. 12A, the defrost heater 330 is continuously turned on during a Tma period and turned off during Tma and Tmb, during Tmc and Tmd, during Tme and Tmf, and during Tmg and Tmh, and the defrost heater 330 is turned on during Tmb and Tmc, during Tmd and Tme, during Tmf and Tmg, and during Tmh and Tmi.


That is, from Tma to Tmi, the defrost heater 330 operates in the pulse operation mode.


Meanwhile, the controller 310 controls the defrost heater 330 to be continuously turned on based on the continuous operation mode Pona, and in the ON state of the defrost heater 330, when the change rate ΔT of the ambient temperature of the evaporator 122 detected by the temperature sensor 320 is equal to or greater than the first reference value ref1, the controller 310 may enter the pulse operation mode Ponb and control the defroster heater 330 to be turned off. Accordingly, it is possible to improve the defrosting efficiency and power consumption.


Meanwhile, when the defrost heater 330 is turned off during the pulse operation mode Ponb and the change rate ΔT of the temperature around the evaporator 122 is equal to or less than the second reference value ref2 less than the first reference value ref1, the controller 310 may be configured to control the defrost heater 330 to be turned on. Accordingly, it is possible to improve the defrosting efficiency and power consumption.


Meanwhile, when the defrost heater 330 is turned on during the pulse operation mode Ponb and the change rate ΔT of the temperature around the evaporator 122 is equal to or greater than the first reference value ref1, the controller 310 may be configured to control the defrost heater 330 may to be turned on. Accordingly, it is possible to improve the defrosting efficiency and power consumption.


Meanwhile, the controller 310 may be configured to control the defrost heater 330 to be continuously turned on based on the continuous operation mode Pona, and based on the pulse operation mode Ponb, the controller 310 may repeatedly turned on and off the defrost heater 320 the change rate ΔT of the temperature around the evaporator 122 may be between the first reference value ref1 and the second reference value ref2. Accordingly, it is possible to improve the defrosting efficiency and power consumption.



FIG. 12B is a diagram showing a temperature waveform of the evaporator when the amount of frost formation is less than that of FIG. 12A.


In (a) of FIG. 12B, CVna represents a temperature change waveform in response to the defrost heater being operated only in the continuous operation mode, and CVnb represents a temperature change waveform in response to the defrost heater being operated by mixing the continuous operation mode and the pulse operation mode.


According to CVna, the defrost heater 330 may be continuously turned on and may be turned off at a time point Tng, as shown in (b) of FIG. 12B.


According to CVnb, as shown in (c) of FIG. 12b, the defrost heater 330 is continuously turned on during a period of Tna, and the defrost heater 330 is turned off during Tna and Tnb, during Tnc and Tnd, during Tne and Tnf, and during Tng and Tnh, and turned on during Tnb and Tnc, during Tnd and Tne, during Tnf and Tng, and during Tnh and Tni.


That is, from Tna to Tni, the defrost heater 330 operates in the pulse operation mode.



FIG. 13 is a view showing a region requiring cooling power supply and a region requiring defrosting according to temperatures of the refrigerating compartment and the freezer compartment.


Referring to the drawing, the horizontal axis may indicate a temperature of the refrigerating compartment, and the vertical axis may indicate a temperature of the freezer compartment.


When a temperature is equal to or lower than a reference temperature of the freezer compartment refma, it may indicate that a freezing capacity is sufficient, and when the temperature is equal to or lower than a reference temperature of the refrigerating compartment refmb, it may indicate that cooling capacity of the refrigerating compartment is sufficient.


An Arma region in the drawing is a region in which freezing capacity of the freezer compartment and cooling capacity of the refrigerating compartment are sufficient, and may be a region requiring defrosting.


Accordingly, when the defrosting required region is satisfied based on the temperature of the refrigerating compartment and the freezer compartment, the controller 310 may be configured to perform the continuous operation mode and the pulse operation mode described above. In particular, ON/OFF of the defrost heater 330 in the pulse operation mode may be controlled based on a temperature change rate around the evaporator 122.


Meanwhile, the Armb region in the drawing may be a region in which both cooling power of the freezer compartment and cooling power of the refrigerating compartment are insufficient, and may be a cooling power supply requiring region requiring cooling power supply.


Accordingly, the controller 310 may be configured to control supply of cooling power. For example, a compressor may be operated or a thermoelectric element may be operated to control supply of cooling power.



FIG. 14 is a flowchart illustrating a defrosting method according to an embodiment of the present disclosure, and FIGS. 15A to 15D are diagrams referenced in the description of FIG. 14.


First, referring to FIG. 14, the controller 310 of the refrigerator 100 according to an embodiment of the present disclosure determines whether a defrosting operation start time point arrives for defrosting (S610).


For example, the controller 310 of the refrigerator 100 may determine whether a defrosting operation start time point arrives, while performing the normal cooling operation mode Pga. The defrosting operation start time point may vary according to a defrost cycle.


Meanwhile, when a defrosting operation start condition is satisfied, for example, in response to a defrosting operation start time point arriving, the controller 310 of the refrigerator 100 may be configured to terminate the normal cooling operation mode and control to perform the defrost operation mode Pdf.


Meanwhile, the defrost operation mode Pdf may include a pre-defrost cooling mode Pbd, a heater operation mode PddT, and a post-defrost cooling mode pbf.


Meanwhile, the heater operation mode PddT may include a continuous operation mode in which the defrost heater 330 is continuously turned on and a pulse operation mode in which the defrost heater 330 is repeatedly turned on and off.


Meanwhile, the controller 310 of the refrigerator 100 may be configured to control the defrost heater 330 to be continuously turned on based on the continuous operation mode Pona of the heater operation mode PddT in the defrost operation mode Pdf (S615).


(a) of FIG. 15A illustrates an example of a temperature waveform Tcva around the evaporator 122, and (b) of FIG. 15A illustrates an example of an operating waveform Pshna of the defrost heater 330.


Referring to the drawing, based on the heater operation mode, the continuous operation mode Pona1 is performed during a period between Ta1 and Tb1.


Meanwhile, the controller 310 of the refrigerator 100 may determine whether the temperature change rate ΔT detected by the temperature sensor 320 sequentially increases, decreases, and increases again while performing the continuous operation mode Pona1 (S617), and if so, may be configured to terminate the continuous operation mode Pona1 and turn off the defrost heater 330 (S618).


The controller 310 of the refrigerator 100 controls the pulse operation mode Ponb1, in which the defrost heater 330 is repeatedly turned on and off according to the end of the continuous operation mode Pona1, to be performed (S620).



FIG. 15A illustrates that, while performing the continuous operation mode Pona1, the temperature change rate increases during period Pr1 that is a period up to time point Tr1, the temperature change rate decreases during period Pr2 that is a period from the time point Tr1 to time point Tr2, and the temperature change rate ΔT increases again from the time point Tr2.


Accordingly, the controller 310 of the refrigerator 100 may determine that the frost of the evaporator 122 is properly removed, and may be configured to control the pulse operation mode Ponb1 to be performed in order to remove the remaining frost and reduce the power consumption.


Accordingly, the controller 310 may be configured to control the defrost heater 330 to be turned off in Tb1 after the predetermined time of the time point Tr2 at which the temperature change rate ΔT increases again.


The controller 310 controls the pulse operation mode Ponb1, in which the defrost heater 330 is repeatedly turned on and off, to be performed after the defrost heater 330 is turned off. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption. In particular, since the defrosting is performed according to the amount of frost of the actual evaporator, it is possible to improve defrosting efficiency and power consumption.


Meanwhile, the controller 310 may determine whether the temperature change rate ΔT detected by the temperature sensor 320 is between a first reference value ref1 and a second reference value ref2 while performing the pulse operation mode Ponb1 (S627), and if so, control the pulse operation mode Ponb1 to be continuously performed (S628). Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


Meanwhile, the controller 310 may perform the pulse operation mode Ponb1 when the temperature change rate ΔT detected by the temperature sensor 320 is between the first reference value ref1 and the second reference value ref2 while performing the pulse operation mode Ponb1, and as illustrated in FIG. 15A, may be configured to control the ON period of the defrost heater 330 to be sequentially decreased.



FIG. 15A illustrates that the ON period of the defrost heater 330 sequentially decreases between Tb1 and Tc1 when the pulse operation mode Ponb1 is performed. Accordingly, it is possible to improve the power consumption while performing the defrosting.


Next, the controller 310 may determine whether the temperature change rate ΔT detected by the temperature sensor 320 exceeds the first reference value ref1 while performing the pulse operation mode Ponb1 (S629), and if so, terminate the pulse operation mode Ponb1, and turn off the defrost heater 330 (S640).



FIG. 15A illustrates that the temperature change rate ΔT detected by the temperature sensor 320 exceeds the first reference value ref1 at the time point Tc1. Accordingly, the controller 310 may be configured to terminate the pulse operation mode Ponb1 and turn off the defrost heater 330. Accordingly, it is possible to terminate the defrost operation mode.


Meanwhile, in step 629, when the temperature change rate ΔT detected by the temperature sensor 320 does not exceed the first reference value ref1, step S632 may be performed.


The controller 310 may determine whether the temperature change rate ΔT detected by the temperature sensor 320 is less than the second reference value ref2 while performing the pulse operation mode Ponb2 (S632), and if so, may be configured to control a continuous operation mode Pona3 to be performed again (S634).


(a) of FIG. 15A illustrates another example of a temperature waveform Tcvb around the evaporator 122, and (b) of FIG. 15B illustrates another example of an operating waveform Pshb1 of the defrost heater 330.


Referring to the drawing, based on the heater operation mode Pon, the continuous operation mode Pona2 is performed during the period Pona2 between Tat and Tb2.



FIG. 15B illustrates that, while performing the continuous operation mode Pona2, the temperature change rate increases during period Ps1 that is a period up to the time point Tr1, the temperature change rate decreases during period Ps2 that is a period from the time point Ts1 to the time point Ts2, and the temperature change rate ΔT increases again from the time point Ts2.


Accordingly, the controller 310 of the refrigerator 100 may determine that the frost of the evaporator 122 is properly removed, and may be configured to control the pulse operation mode Ponb2 to be performed in order to remove the remaining frost and reduce the power consumption.


Accordingly, the controller 310 may be configured to control the defrost heater 330 to be turned off in Tb2 after the predetermined time of the time point Ts2 at which the temperature change rate ΔT increases again.


The controller 310 controls the pulse operation mode Ponb2, in which the defrost heater 330 is repeatedly turned on and off, to be performed after the defrost heater 330 is turned off. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption. In particular, since the defrosting is performed according to the amount of frost of the actual evaporator, it is possible to improve defrosting efficiency and power consumption.


Meanwhile, FIG. 15B illustrates that the temperature change rate ΔT detected by the temperature sensor 320 is less than the second reference value ref2 at the time point Tc2 while performing the pulse operation mode Ponb2.


Accordingly, the controller 310 may end a pulse operation mode Ponb12, and control the continuous operation mode Pona3 to be performed again.



FIG. 15B illustrates that the continuous operation mode Pona3 is performed again between Tc2 and Tc3.


Meanwhile, the controller 310 may be configured to control, when the continuous operation mode Pona1 is performed again, the duration Tc2 to Tc3 of the continuous operation mode Pona3 to be less than the duration Tat to Tb2 of the continuous operation mode Pona2 before the pulse operation mode Ponb1 as illustrated in FIG. 15B. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


Meanwhile, FIG. 15B illustrates that the temperature change rate ΔT detected by the temperature sensor 320 exceeds the first reference value ref1 at the time point Tc3 while performing the continuous operation mode Pona3.


Accordingly, the controller 310 may be configured to terminate the continuous operation mode Pona3 and turn off the defrost heater 330. Accordingly, it is possible to terminate the defrost operation mode.


Meanwhile, in response to the defrosting operation start time point arriving while performing the normal cooling operation mode the controller 310, the controller 310 may be configured to control the defrost operation mode including the pre-defrost cooling mode Pbd, the heater operation mode PddT, and the post-defrost cooling mode pbf to be performed, and control the continuous operation mode Pona1 of the defrost heater and the pulse operation mode Ponb1, in which the defrost heater is repeatedly turned on and off, to be performed, based on the heater operation mode PddT. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


Meanwhile, the controller 310 may be configured to, as the number of opening times of the cooling compartment door increases, decrease the duration of the defrost operation mode. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.



FIG. 16 is a flowchart illustrating a defrosting method according to another embodiment of the present disclosure, and FIGS. 17A to 17D are diagrams referenced in the description of FIG. 16.


First, referring to FIG. 16, the controller 310 of the refrigerator 100 according to the embodiment of the present disclosure determines whether it is a defrosting operation start time point for defrosting (S1610).


For example, the controller 310 of the refrigerator 100 may determine whether it is a defrosting operation start time point while performing a normal cooling operation mode Pga. The defrosting operation start time point may be changed according to the defrosting period.


When the defrosting operation start condition is satisfied, for example, in response to the defrosting operation start time point arriving, the controller 310 of the refrigerator 100 may be configured to terminate the normal cooling operation mode, and control the defrost operation mode Pdf to be performed.


Meanwhile, the defrost operation mode Pdf may include the pre-defrost cooling mode Pbd, the heater operation mode PddT, and the post-defrost cooling mode pbf.


Meanwhile, the heater operation mode PddT may include the continuous operation mode in which the defrost heater 330 is continuously turned on and the pulse operation mode in which the defrost heater 330 is repeatedly turned on and off.


Meanwhile, the controller 310 of the refrigerator 100 may be configured to control the defrost heater 330 to be continuously turned on based on the continuous operation mode Pona of the heater operation mode PddT in the defrost operation mode Pdf (S1615).


Meanwhile, the controller 310 of the refrigerator 100 may determine whether the temperature change rate ΔT detected by the temperature sensor 320 sequentially increases, decreases, and increases again while performing the continuous operation mode Pona1 (S1617), and if so, may be configured to terminate the continuous operation mode and turn off the defrost heater 330 (S1618).


Next, the controller 310 of the refrigerator 100 determines whether the temperature detected by the temperature sensor 320 reaches the defrosting end temperature Tend before performing the pulse operation mode Ponb in which the defrost heater 330 is repeatedly turned on and off after the defrost heater 330 is turned off according to the end of the continuous operation mode (S1619).


Meanwhile, when the temperature detected by the temperature sensor 320 reaches the defrosting end temperature Tend before performing the pulse operation mode Ponb, the controller 310 of the refrigerator 100 controls the defrost heater 330 to be turned on and off at least once after the defrosting end temperature Tend arrives (S1621).


By turning on and off the defrost heater 330 at least once, it is possible to prevent the defrosting from being less performed according to the end of the continuous operation mode. That is, by turning on and off the defrost heater 330 at least once, it is possible to improve the reliability of the defrosting completion and the defrosting efficiency. In particular, since the defrosting is performed according to the amount of frost of the actual evaporator, it is possible to improve defrosting efficiency and power consumption.


After performing the turn on and off at least once, the controller 310 of the refrigerator 100 may be configured to terminate the heater operation mode PddT (S1622), and may be configured to control the post-defrost cooling mode pbf to be performed.


Meanwhile, the controller 310 may be configured to turn off the defrost heater 330 when the temperature detected by the temperature sensor 320 reaches the defrosting end temperature Tend during the continuous operation mode Pona. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


Meanwhile, the controller 310 controls the pulse operation mode Ponb, in which the defrost heater 330 is repeatedly turned on and off, to be performed after the continuous operation mode Pona ends, and when the temperature detected by the temperature sensor 320 reaches the defrosting end temperature Tend while performing the pulse operation mode Ponb, may be configured to turn off the defrost heater 330. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


(a) of FIG. 17A illustrates an example of a temperature waveform Tck1 around the evaporator 122, and (b) of FIG. 17A illustrates an example of an operating waveform Pshka of the defrost heater 330.


Referring to the drawing, it is exemplified that, while performing the continuous operation mode Pona, the temperature change rate increases during period Pu1 that is a period up to time point Tu1, the temperature change rate decreases during period Pu2 that is a period from the time point Tu1 to time point Tu2, and the temperature change rate ΔT increases again from the time point Tu2.


Accordingly, the controller 310 of the refrigerator 100 may determine that the frost of the evaporator 122 is properly removed, and may be configured to control the continuous operation mode Pona to end after a predetermined time elapses from the time point Tu2.


Meanwhile, when the temperature detected by the temperature sensor 320 reaches the defrosting end temperature Tend between the time point Tu2 at which the temperature change rate ΔT increases again and the end time point Tk1 of the continuous operation mode Pona, the controller 310 of the refrigerator 100 may determine that the defrosting has been sufficiently performed in the continuous operation mode Pona, and control the defrost operation mode to end together with the end of the continuous operation mode Pona.


That is, when the temperature detected by the temperature sensor 320 reaches the defrosting end temperature Tend between the time point Tu2 at which the temperature change rate AT increases again and the end time point Tk1 of the continuous operation mode Pona, the controller 310 of the refrigerator 100 may determine that the defrosting has been sufficiently performed in the continuous operation mode Pona, and control only the continuous operation mode Pona to be performed and the pulse operation mode Ponb not to be performed.


(a) of FIG. 17B illustrates an example of a temperature waveform Tck2 around the evaporator 122, and (b) of FIG. 17B illustrates an example of an operating waveform Pshkb of the defrost heater 330.


Referring to the drawing, it is exemplified that, while performing the continuous operation mode Pona, the temperature change rate increases during period Pv1 that is a period up to time point Tv1, the temperature change rate decreases during period Pv2 that is a period from the time point Tv1 to time point Tv2, and the temperature change rate ΔT increases again from the time point Tv2.


Accordingly, the controller 310 of the refrigerator 100 may determine that the frost of the evaporator 122 is properly removed, and may be configured to control the continuous operation mode Pona to end after a predetermined time elapses from the time point Tv2.


In the drawing, it is exemplified that the continuous operation mode Pona ends at time point Tkm.


Meanwhile, when the temperature detected by the temperature sensor 320 reaches the defrosting end temperature Tend at the time point Tk1 after Tkm, which is the time point at which the continuous operation mode Pona ends, when the defrost operation mode ends without performing the pulse operation mode, the problem of reliability may occur in the defrosting.


Accordingly, the controller 310 of the refrigerator 100 controls the defrost heater 330 to be turned on and off at least once after Tkm, which is the time point at which the continuous operation mode Pona ends.


In the drawings, it is illustrated that the defrost heater 330 is turned on at least once at the time point Tk2. Alternatively, it is also possible to perform turn on and off the defrost heater 330 a plurality of times.


By turning on and off the defrost heater 330 at least once after Tkm, which is the time point at which the continuous operation mode Pona ends, the remaining frost can be removed, and as a result, it is possible to improve the reliability of defrost.


Meanwhile, as the difference between the time point Tm at which the continuous operation mode Pona ends and the time point Tk1 at which the defrosting end temperature (Tend) arrives increases, the controller 310 of the refrigerator 100 may be configured to increase the number of opening times of turn on and off of the defrost heater 330. That is, as the difference increases, it is possible to control the ON period when the defrost heater 330 is turned on and off to increase. Accordingly, the efficient and stable defrosting is possible.


Next, in step S1619, when the defrosting end temperature is not reached after the defrost heater 330 is turned off, the pulse operation mode Ponb1 in which the defrost heater 330 is repeatedly turned on and off according to the end of the continuous operation mode Pona1 is controlled to be performed (S1620).



FIG. 17C illustrates that, while performing the continuous operation mode Pona1, the temperature change rate increases during the period Pr1 that is a period up to the time point Tr1, the temperature change rate decreases during period Pr2 that is a period from the time point Tr1 to the time point Tr2, and the temperature change rate ΔT increases again from the time point Tr2.


Accordingly, the controller 310 of the refrigerator 100 may determine that the frost of the evaporator 122 is properly removed, and may be configured to control the pulse operation mode Ponb1 to be performed in order to remove the remaining frost and reduce the power consumption.


Accordingly, the controller 310 may be configured to control the defrost heater 330 to be turned off in Tb1 after the predetermined time of the time point Tr2 at which the temperature change rate ΔT increases again.


The controller 310 controls the pulse operation mode Ponb1, in which the defrost heater 330 is repeatedly turned on and off, to be performed after the defrost heater 330 is turned off. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption. In particular, since the defrosting is performed according to the amount of frost of the actual evaporator, it is possible to improve defrosting efficiency and power consumption.


Meanwhile, the controller 310 may determine whether the temperature change rate ΔT detected by the temperature sensor 320 is between a first reference value ref1 and a second reference value ref2 while performing the pulse operation mode Ponb1 (S1627), and if so, control the pulse operation mode Ponb1 to be continuously performed (S1628). Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


Meanwhile, the controller 310 may perform the pulse operation mode Ponb1 when the temperature change rate ΔT detected by the temperature sensor 320 is between the first reference value ref1 and the second reference value ref2 while performing the pulse operation mode Ponb1, and as illustrated in FIG. 17C, may be configured to control the ON period of the defrost heater 330 to be sequentially decreased.



FIG. 17C illustrates that the ON period of the defrost heater 330 sequentially decreases between Tb1 and Tc1 when the pulse operation modePonb1 is performed. Accordingly, it is possible to improve the power consumption while performing the defrosting.


Next, the controller 310 may determine whether the temperature change rate ΔT detected by the temperature sensor 320 exceeds the first reference value ref1 while performing the pulse operation mode Ponb1 (S1629), and if so, terminate the pulse operation mode Ponb1, and turn off the defrost heater 330 (S1640).



FIG. 15C illustrates that the temperature change rate AT detected by the temperature sensor 320 exceeds the first reference value ref1 at the time point Tc1. Accordingly, the controller 310 may be configured to terminate the pulse operation mode Ponb1 and turn off the defrost heater 330. Accordingly, it is possible to terminate the defrost operation mode.


Meanwhile, in step S1629, when the temperature change rate ΔT detected by the temperature sensor 320 does not exceed the first reference value ref1, step S1632 may be performed.


The controller 310 may determine whether the temperature change rate ΔT detected by the temperature sensor 320 is less than the second reference value ref2 while performing the pulse operation mode Ponb2 (S1632), and if so, may be configured to control a continuous operation mode Pona3 to be performed again (S1634).


(a) of FIG. 15D illustrates another example of a temperature waveform Tcvb around the evaporator 122, and (b) of FIG. 15D illustrates another example of an operating waveform Pshnb of the defrost heater 330.


Referring to the drawing, based on the heater operation mode Pon, the continuous operation mode Pona2 is performed during the period Pona2 between Tat and Tb2.



FIG. 15D illustrates that, while performing the continuous operation mode Pona2, the temperature change rate increases during period Ps1 that is a period up to the time point Tr1, the temperature change rate decreases during period Ps2 that is a period from the time point Ts1 to the time point Ts2, and the temperature change rate ΔT increases again from the time point Ts2.


Accordingly, the controller 310 of the refrigerator 100 may determine that the frost of the evaporator 122 is properly removed, and may be configured to control the pulse operation mode Ponb2 to be performed in order to remove the remaining frost and reduce the power consumption.


Accordingly, the controller 310 may be configured to control the defrost heater 330 to be turned off in Tb2 after the predetermined time of the time point Ts2 at which the temperature change rate ΔT increases again.


The controller 310 controls the pulse operation mode Ponb2, in which the defrost heater 330 is repeatedly turned on and off, to be performed after the defrost heater 330 is turned off. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption. In particular, since the defrosting is performed according to the amount of frost of the actual evaporator, it is possible to improve defrosting efficiency and power consumption.


Meanwhile, FIG. 15D illustrates that the temperature change rate AT detected by the temperature sensor 320 is less than the second reference value ref2 at the time point Tc2 while performing the pulse operation mode Ponb2.


Accordingly, the controller 310 may end a pulse operation mode Ponb12, and control the continuous operation mode Pona3 to be performed again.



FIG. 15D illustrates that the continuous operation mode Pona3 is performed again between Tc2 and Tc3.


Meanwhile, the controller 310 may be configured to control, when the continuous operation mode Pona1 is performed again, the duration Tc2 to Tc3 of the continuous operation mode Pona3 to be less than the duration Tat to Tb2 of the continuous operation mode Pona2 before the pulse operation mode Ponb1 as illustrated in FIG. 15D. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


Meanwhile, FIG. 15D illustrates that the temperature change rate ΔT detected by the temperature sensor 320 exceeds the first reference value ref1 at the time point Tc3 while performing the continuous operation mode Pona3.


Accordingly, the controller 310 may be configured to terminate the continuous operation mode Pona3 and turn off the defrost heater 330. Accordingly, it is possible to terminate the defrost operation mode.


Meanwhile, in response to the defrosting operation start time point arriving while performing the normal cooling operation mode the controller 310, the controller 310 may be configured to control the defrost operation mode including the pre-defrost cooling mode Pbd, the heater operation mode PddT, and the post-defrost cooling mode pbf to be performed, and control the continuous operation mode Pona1 of the defrost heater and the pulse operation mode Ponb1, in which the defrost heater is repeatedly turned on and off, to be performed, based on the heater operation mode PddT. Accordingly, it is possible to improve the defrosting efficiency and reduce the power consumption.


In the refrigerator according to the present disclosure, the configuration and the method of the embodiments as described above are not restrictively applied. Rather, all or some of the embodiments may be selectively combined with each other the embodiments may be variously modified.


In addition, although the preferred embodiments of the present disclosure have been illustrated, the present disclosure is not limited to the specific embodiments described above, and can be variously modified by those skilled in the art to which the present disclosure pertains without departing from the gist of the present disclosure claimed in the claims, and these modifications should not be understood individually from the technical ideas or prospects of the present disclosure.


INDUSTRIAL APPLICABILITY

The present disclosure can be applied to a refrigerator, and more particularly, can be applied to a refrigerator capable of improving defrosting efficiency and power consumption.

Claims
  • 1. A refrigerator, comprising: an evaporator configured to perform heat exchange;a defrost heater configured to operate to remove frost formed on the evaporator;a temperature sensor configured to detect an ambient temperature of the evaporator; anda controller configured to control the defrost heater, wherein, in response to a defrosting operation start time point arriving, the controller is configured to perform a defrost operation mode including a pre-defrost cooling mode, a heater operation mode, and a post-defrost cooling mode,perform a continuous operation mode in which the defrost heater is continuously turned on based on the heater operation mode, andin response to a temperature change rate detected by the temperature sensor sequentially increasing, decreasing, and increasing again while performing the continuous operation mode, perform a pulse operation mode, in which the defrost heater is repeatedly turned on and off.
  • 2. The refrigerator of claim 1, wherein, in response to a temperature change rate detected by the temperature sensor sequentially increasing, decreasing, and increasing again while performing the continuous operation mode, after a predetermined time elapses, the controller is configured to perform the pulse operation mode after the defrost heater is turned off.
  • 3. The refrigerator of claim 1, wherein, in response to the temperature change rate detected by the temperature sensor being between a first reference value and a second reference value while performing the pulse operation mode, the controller is configured to continuously perform the pulse operation mode.
  • 4. The refrigerator of claim 1, wherein, in response to the temperature change rate detected by the temperature sensor being between a first reference value and a second reference value while performing the pulse operation mode, the controller is configured to perform the pulse operation mode and sequentially decrease an ON period of the defrost heater.
  • 5. The refrigerator of claim 3, wherein the controller is configured to terminate the pulse operation mode and turn off the defrost heater in response to exceeding the first reference value while performing the pulse operation mode.
  • 6. The refrigerator of claim 3, wherein the controller is configured to terminate the pulse operation mode and perform the continuous operation mode again in response to less than the second reference value while performing the pulse operation mode.
  • 7. The refrigerator of claim 6, wherein, in response to performing the continuous operation mode again, the controller is configured to control a duration of the continuous operation mode to be less than a duration of the continuous operation mode before the pulse operation mode.
  • 8. The refrigerator of claim 1, wherein, in response to the defrosting operation start time point arriving while performing the normal cooling operation mode, the controller is configured to perform the defrost operation mode including the pre-defrosting cooling mode, the heater operation mode, and the post-defrosting cooling mode, and perform the continuous operation mode of the defrost heater, and the pulse operation mode, in which the defrost heater is repeatedly turned on and off, based on the heater operation mode.
  • 9. The refrigerator of claim 1, wherein the controller is configured to, as the number of opening times of the cooling compartment door increases, decrease a duration of the defrost operation mode.
  • 10. The refrigerator of claim 1, wherein the controller is configured to control a peak temperature arrival time point of the evaporator in response to the continuous operation mode and the pulse operation mode being performed in the defrost operation mode to be later than the peak temperature arrival time point of the evaporator in response to the defrost heater being only continuously turned on in the defrost operation mode.
  • 11. The refrigerator of claim 1, wherein the controller is configured to control an effective defrost in response to the continuous operation mode and the pulse operation mode being performed in the defrost operation mode to be greater than the effective defrost in response to the defrost heater being only continuously turned on in the defrost operation mode.
  • 12. The refrigerator of claim 1, wherein the controller is configured to control a heater OFF time point in response to the continuous operation mode and the pulse operation mode being performed in the defrost operation mode to be later than the heater OFF time point in response to the defrost heater being only continuously turned on in the defrost operation mode.
  • 13. The refrigerator of claim 1, wherein the controller is configured to control a size of an overheat temperature region higher than the defrosting end temperature in response to the continuous operation mode and the pulse operation mode being performed in the defrost operation mode to be less than a size of the overheat temperature region higher than the defrosting end temperature only in response to the defrost heater being only continuously turned on in the defrost operation mode.
  • 14. The refrigerator of claim 1, wherein the controller is configured to control a cooling power supply time point according to a normal cooling operation mode in response to the continuous operation mode and the pulse operation mode being performed in the defrost operation mode to be later than the cooling power supply time point according to a normal cooling operation mode only in response to the defrost heater being only continuously turned on in the defrost operation mode.
  • 15. The refrigerator of claim 1, wherein after the continuous operation mode ends, before the pulse operation mode in which the defrost heater is repeatedly turned on and off, in response to the temperature detected by the temperature sensor reaching the defrosting end temperature, the controller is configured to turn on and off the defrost heater at least once after the defrosting end temperature arrives.
  • 16. A refrigerator, comprising: an evaporator configured to perform heat exchange;a defrost heater configured to operate to remove frost formed on the evaporator;a temperature sensor configured to detect an ambient temperature of the evaporator; anda controller configured to control the defrost heater,wherein, in response to a defrosting operation start time point arriving, the controller is configured to perform a defrost operation mode including a pre-defrost cooling mode, a heater operation mode, and a post-defrost cooling mode,perform a continuous operation mode in which the defrost heater is continuously turned on based on the heater operation mode, andafter the continuous operation mode ends, before the pulse operation mode in which the defrost heater is repeatedly turned on and off, in response to the temperature detected by the temperature sensor reaching the defrosting end temperature, the controller is configured to turn on and off the defrost heater at least once after the defrosting end temperature arrives.
  • 17. The refrigerator of claim 16, wherein the controller is configured to terminate the heater operation mode after performing the turn on and off at least once, and perform the post-defrost cooling mode.
  • 18. The refrigerator of claim 16, wherein the controller is configured to turn off the defrost heater in response to the temperature detected by the temperature sensor reaching the defrosting end temperature during the continuous operation mode.
  • 19. The refrigerator of claim 16, wherein the controller is configured to perform a pulse operation mode in which the defrost heater is repeatedly turned on and off after the continuous operation mode ends, and turn off the defrost heater in response to the temperature detected by the temperature sensor reaching the defrosting end temperature during the continuous operation mode.
Priority Claims (2)
Number Date Country Kind
10-2020-0054355 May 2020 KR national
10-2020-0054356 May 2020 KR national
PCT Information
Filing Document Filing Date Country Kind
PCT/KR2021/005057 4/21/2021 WO