1. Field
This relates to a refrigerator, and in particular, to a structure for moving a drawer of a refrigerator.
2. Background
A refrigerator is an appliance for the storage of fresh food. Refrigerators may generally be categorized into top freezer types, bottom freezer types, and side-by-side refrigerators, depending on the respective positions of the freezer and refrigeration compartments.
For example, the bottom freezer configuration has the freezer compartment positioned below the refrigeration compartment. In the bottom freezer configuration, a door that pivots about an edge of the main body may open and close the refrigeration compartment, and a door that opens and closes the freezer compartment may be provided with a storage box door that moves forward and rearward relative to the main body. Because in this configuration the freezer compartment is provided below the refrigeration compartment, a user stoops to grasp and pull the door forward in order to open the freezer compartment. A system to facilitate the opening and/or closing of such a freezer compartment would enhance the utility or convenience of a bottom freezer type refrigerator. Further, a system to facilitate opening and/or closing of a drawer in a refrigerator would enhance user convenience.
The embodiments will be described in detail with reference to the following drawings in which like reference numerals refer to like elements wherein:
To facilitate the opening and/or closing of a compartment of a refrigerator, such as, for example, a lower freezer compartment, an automatic opening configuration may be provided. This automatic opener may determine when a user intends to open a compartment door by sensing a gripping or grasping of a door handle as the compartment door is moved a predetermined distance forward from the front surface of the main body, and then automatically moving the door, and the storage box to which it is coupled, to an open position. A motor may be provided with the appropriate compartment, and a rotating member such as, for example, a gear may be connected to a shaft of the motor. As an undersurface of the storage box comes into contact with the rotating member, the storage box moves forward and rearward based on a direction of the rotation of the rotating member.
However, when using this type of automatic opener, a user still grasps and exerts a pulling force on the handle to initiate the automatic opening. Typically, a sealing member such as, for example, a gasket may be attached to the rear surface of the storage box to prevent cold air leakage, and an adhering member such, for example, as a magnet may be provided inside the sealing member to maintain a tight seal therebetween. Thus in order to initiate movement of the storage box, a user grasps and pulls the storage box with a force greater than the magnetic force. In addition, when the storage box is provided at the bottom of the refrigerator, a user stoops to pull it out, which may be physically challenging for children, the elderly, and smaller users. Also, the handle protrudes from the front surface of the storage box, thereby increasing the dimensions for the packaging and installation of the refrigerator and presenting a potential hazard for users who may collide with the handle. It is difficult or not possible to omit the handle in this type of automatic opener.
Further, the time it takes for a user to grasp a handle and initiate movement of the storage box, coupled with the time it takes for a controller to sense this movement and provide for automated movement of the storage box may be excessive, thus reducing utility. Additionally, the automatic opener may only move the storage box a distance adequate to separate it from the refrigerator main body, and thus a user still directly grasps the handle and pulls the storage box further forward thereafter. When the weight of food stored in the storage box may be considerable, withdrawing the storage box in this manner may be difficult.
By providing a drive motor and a gear assembly on the floor of the refrigeration compartment or the freezer compartment to provide for movement of a storage box provided therein, the storage space within the refrigerator may be reduced by the volume consumed by the motor and gear assembly. This may also result in a loss of insulation in the refrigerator main body. That is, if the inner case were to be recessed to receive a motor, an insulating layer between the inner case and an outer case of the main body would become thinner, thus reducing insulation between the inside and outside of the refrigerator.
Further, if movement of the storage box is driven by this type of motor and gear assembly, such a gear assembly would likely include a rack that engages a gear, the rack extending from front to rear along the floor of the storage box. Thus, the length of the rack would necessarily be limited by the overall length of the floor of the storage box. For example, the rear surface of a freezer compartment storage box in a bottom freezer refrigerator may be sloped to accommodate a machine room provided at a lower rear portion of the refrigerator. Thus the length of the lower portion of the freezer compartment storage box may be less than the length of the upper portion thereof, limiting accessibility to the interior of the storage box. If a plurality of storage boxes are provided one on top of another, a separate motor and gear assembly may be provided for each storage box, thereby complicating the support structure required for the stack storage boxes.
Additionally, the automatic opener described above may include a mechanism such as, for example, a switch, to simply sense whether or not the storage box has been fully withdrawn or closed. However, this switch would not be necessarily sense whether or not the storage box is being withdrawn at a normal speed, whether or not the withdrawing of the storage box is impeded by obstacles, and whether or not the storage box is being withdrawn at a set speed regardless of the weight of food stored therein.
The exemplary bottom freezer type refrigerator 10 shown in
The drawer 13 may include a door 131 that forms a front exterior of the drawer 13 and a storage box 132 provided behind the door 131 to receive store food items. A frame 15 may extend rearward from a rear of the freezer compartment door 131 to support opposite side edges of the storage box 132, and a rail assembly 16 may be positioned corresponding to the frame 15 to allow the storage box 132 to be inserted into and withdrawn from the freezer compartment 111. The rail assembly 16 may have a first end fixed to an inner surface of the freezer compartment 111, and a second end fixed to the frame 15 to allow the rail assembly 16 to be adjusted in length and to allow the storage box 132 to be inserted into and withdrawn from the freezer compartment 111 along the rail assembly 16.
The refrigerator 10 may also include an anti-wobble, or alignment apparatus for preventing wobbling or mis-alignment as the storage box 132 is withdrawn from or inserted into the freezer compartment 111. A rail guide 17 provided at one or both opposite sides of the freezer compartment 111 corresponding to the rail assembly 16 to hold and guide the rail assembly 16, and a movement apparatus for automatically moving, that is, withdrawing and inserting, the storage box 132 relative to the freezer compartment 111. In detail, the alignment apparatus may include a suspended portion 18 coupled to the rear of the frame 15 to prevent lateral wobbling or uncoordinated lateral movement when the storage box 132 is being withdrawn from or inserted into the freezer compartment 111, and a guide member provided on the rail guide 17 to guide the movement of the suspended portion 18. The guide member may include a rail mounting recess 171 formed in the rail guide 17 to receive the rail assembly 16 and a guide rack 172 that extends from front to rear at the bottom of the rail mounting recess 171.
The suspended portion 18 may include a shaft 181 with its opposite ends connected to a respective portion of the frame 15 provided on opposite sides of the storage box 132, and a pinion 182 provided respectively at one or both ends of the shaft 181. A plurality of gears may be formed on the outer peripheral surface of the pinion 182, and a corresponding plurality of gear teeth may be formed on the upper surface of the guide rack 172 to engage the pinion 182. Accordingly, when the pinion 182 rotates in an engaged state with the guide rack 172, the pinion 182 rolls along the guide rack 172 to in turn move the storage box 132, and the drawer 13 is not biased to the left or right, but is withdrawn in a straight path. Thus, the shaft 181, pinion 182 and guide rack 172 prevent the drawer 13 from wobbling or moving laterally.
In certain embodiments, the drawer 13 may be withdrawn from the refrigerator 10 automatically. For this purpose, the drawer movement apparatus may include a driving force generator coupled to one or all of the pinions 182 to impart a rotational force on the pinions 182, and a driving force transmitter that transmits the driving force from the driving force generator to the pinions 182 to allow the storage box 132 to be moved. The driving force generator may be, for example, a drive motor 20 that provides rotational force to the pinions 182 and the driving force transmitter may be, for example, an anti-wobble or alignment apparatus including the suspended portion 18 and the guide rack 172 as described above. That is, the alignment apparatus may prevent lateral misalignment wobbling of the drawer 13, while also transmitting a driving force that automatically moves the drawer 13. The driving force generator may be provided with the freezer compartment door 131, and may include a drive motor 20 or other driving means capable of automatically moving the drawer 13, such as, for example, an actuator employing a solenoid.
The rail assembly 16 may include a fixed rail 161 fixed to the rail mounting recess 171, a moving rail 162 fixed to the frame 15, and an extending rail 163 that extends between the fixed rail 161 and the moving rail 162. Depending on a front-to-rear length of the storage box 132, the rail assembly 16 may include one or more extending rails 163. In certain embodiments, the rail assembly 16 may include only the fixed rail 161 and the moving rail 162. Additionally, the shaft 181 and the drive motor 20 may be provided at a rear of the frame 15, or may be provided at a rear of the moving rail 162, depending on the particular storage box 132/refrigerator 10 design. The storage box 132 may be detachably coupled to the frame 15 to allow the storage box 132 to be removed from the refrigerator 10 for periodic cleaning.
A dispenser 19 for dispensing water or ice may be provided at the front of the refrigeration compartment door 12. The dispenser 19 may include a receptacle 193 comprising a recess having a predetermined depth, and a chute 194 and a dispensing tap (not shown in detail) through which ice and water may be dispensed by actuating a lever 195. A water pan 196 may be provided on the floor of the receptacle 193. A display 191 for displaying various data such as, for example, an operating state of the refrigerator 10 and a temperature inside the refrigerator 10, and a button panel 192 including various input buttons 192a, may be provided with the dispenser 19. Various commands for withdrawing and inserting the storage box 132 may be input using the input buttons 192a.
An input button 192a for entering a command to withdraw the storage box 132 from or insert the storage box 132 into the refrigerator 10 may be provided in various formats such as, for example, a capacitive switch employing changes in electrostatic capacitance, a tact switch, a toggle switch, or other type of switch as appropriate. Additionally, although the input button 192a shown in
For example, if the input button 192a were provided on the front surface of the freezer compartment door 131, the input button 192a may include a vibration sensor switch that operates by detecting vibrations transferred to the freezer compartment door 131. That is, if, for example, a user is unable to use either hand to initiate the opening of the door 131, and instead imparts a gentle shock with, for example, a foot, to the freezer compartment door 131, the vibration transferred from the shock may be sensed and the drive motor 20 may be operated to withdraw the storage box 132 from the freezer compartment 111.
In alternative embodiments, the input button 192a may instead be provided on a separate remote control unit that controls various other functions of the refrigerator, or other devices within a given range. For example, an input button 192a that controls movement of the drawer 23 may be provided with a remote control unit that controls, for example, internal temperatures of the various compartments of the refrigerator, operation of a display module/television mounted on a surface of the refrigerator, and the like.
A drawer movement apparatus according to an embodiment as broadly described herein is shown in more detail in
The drive motor 20 may be an inner rotor type motor, and the pinion 182 may be connected to a motor shaft 22 connected to the rotor. The drive motor 20 may be any motor capable of both forward and reverse rotation and variable speed operation.
Such a rotor and stator, or other components forming the drive motor 20, may be protected by a housing 21. A fastening mount 31 may extend from the frame 15, and the fastening mount 31 and the housing 21 of the drive motor 20 may be coupled by a bracket 30. Accordingly, the assembly of the drive motor 20 and the suspended portion 18 may be fixedly coupled to a rear portion of the frame 15, and the pinion 182 may be coupled to the motor shaft 22 so that pinion 182 may be rotated by the motor 20.
The drive motor 20 may be fixed to the frame 15 by various methods which all fall within the spirit and scope as presented herein. Also, the drive motor 20 may be fixed to the rear of the moving rail 162 instead of to the frame 15. In alternative embodiments, the drive motor 20 may be integrally provided with the frame 15.
The drive motor 20 shown in
Alternatively, the end of the shaft 181 may instead be inserted into a rear portion of the moving rail 162, as described above.
The automatic movement process of a storage box 132 from a refrigerator 10 provided with a storage box movement apparatus as embodied and broadly described herein will now be discussed.
In order to withdraw the storage box 132 from a corresponding compartment of the refrigerator 10, a user first actuates an input button 192a, which, as discussed above, may be provided at one side of the dispenser 19, on a surface of the refrigerator 10, or on a remote control unit, as appropriate. Similarly, actuation of the input button 192a may be accomplished by simply pushing the button 192a, or by imparting an external shock to an appropriate portion of the refrigerator 10 to actuate a vibration sensor switch. When the input button 192a is actuated to initiate a storage box withdrawing command, the command is transmitted to a controller (not shown in detail) of the refrigerator 10. The controller of the refrigerator 10 transmits an operation signal to a drive motor controller that controls the operation of the drive motor 20. This operation signal may include, for example, directional data for moving the storage box 132 either out of or into the refrigerator 10, and moving speed data for the storage box 132. That is, the directional data indicates which direction the drive motor 20 should be rotated, and the speed data indicates a number of revolutions per minute (RPM) of the drive motor 20 to achieve a particular speed.
The drive motor 20 may then be driven according to the operation signal in order to move the door 131 and storage box 132 accordingly. This allows the storage box 132 to be automatically withdrawn from the refrigerator 10 without requiring a user to apply a specific, physical withdrawing movement, thus eliminating the need for a separate handle member on the front surface of the door 131. Thus, the door 131 may have a flush front surface without any protrusions to provide a clean exterior finish, and to provide an inner cover coupled to the rear of the outer cover with an insulator interposed therebetween to preserve the insulative qualities of the refrigerator 10.
The controller of the refrigerator 10 may receive RPM data associated with the rotation of the drive motor 20 in real time, and may calculate the withdrawing speed (in m/s or other unit, as appropriate) of the storage box 132 accordingly. For example, using the rotating speed of the drive motor 20 and a circumferential value of the pinion 182, the moving speed of the storage box 132 can be calculated per unit time. Using this data, the storage box 132 may be withdrawn at a preset speed, regardless of the weight of food stored in the storage box 132. In certain embodiments, the preset speed may be a speed which is selected by a user, and which may also be altered based on user preferences
The storage box 132 may be continuously or intermittently withdrawn from or inserted into the refrigerator 10 according to how the input button 192a is manipulated. For example, the storage box 132 may be controlled so that it is completely withdrawn if the input button 192a is pressed once and/or held for a predetermined amount of time. Similarly, the storage box 132 may be controlled so that it is withdrawn in stages if the input button 192a is pressed repeatedly with a certain interval in between pressings. Other arrangements may also be appropriate.
The storage box 132 may also be controlled so that its movement is automatically stopped if the storage box 132 encounters an obstacle as the storage box 132 is moved.
The storage box 132 may be controlled so that it is stopped when it has been withdrawn a predetermined distance, and may be controlled so that it is either reinserted or withdrawn completely, based on the user's particular intentions. For example, if the storage box 132 has been stopped after being withdrawn a predetermined distance, the storage box 132 may then be completely withdrawn when a user pulls the freezer compartment door 131, or the storage box 132 may be re-inserted into the refrigerator 10 when a user pushes the freezer compartment door 131.
If a storage box withdrawal command is input through the input button 192a, and the storage box 132 is not in a withdrawn or open state, or stops during withdrawal, this may be sensed and an error signal may be generated. The storage box 132 may be controlled so that it is automatically closed when left in a withdrawn or open state for more than a predetermined amount of time, in order to minimize cold air loss.
The storage box 132 of a refrigerator 10 according to embodiments as broadly described herein may not only be automatically withdrawn, but withdrawn manually as well. For example, in the event of a power outage where power cannot be supplied to the drive motor 20, or when a user does not manipulate the input button 192a but instead grasps and pulls or pushes the door 131 by hand, the storage box 132 is not subjected to resistance from the drive motor 20 and may be smoothly withdrawn or re-inserted into the refrigerator 10. Even when the power is not supplied to the motor, withdrawal of the storage box 132 is not impeded by the drive motor 20.
As an alternative to the drive motor 20 being connected to the controller of the refrigerator 10 by a plurality of signal wires and receiving power through a plurality of electrical wires, a charging apparatus may be provided with the drive motor 20 to eliminate the need for electrical wires, and a short range wireless transmitter-receiver system may be provided to eliminate the need for signal wires and electrical wires.
Although, for ease of discussion, the drawer movement apparatus has to this point been applied to the movement of a freezer compartment door in a bottom freezer type refrigerator, it is well understood that such an apparatus can be applied to advantageous effect in other types of household appliances. For example,
The refrigerator 60 shown in
A plurality of freezer compartment drawers 513 may be stacked within the freezer compartment 511. To accommodate different types of food and associated freezing requirements, the freezer compartment drawers 513 may be maintained at different temperatures and/or at a different temperature than the rest of the freezer compartment 511 interior. Likewise, a plurality of refrigeration compartment drawers 514 may be provided within the refrigeration compartment 512 to preserve food at appropriate refrigerated temperatures, such as, for example, 3°-4° C. A drawer movement structure as described above and as shown in
The refrigerator 60 shown in
A plurality of storage boxes 64 may housed in the plurality of upper storage compartments. The drawer 63 may be formed of a storage box 632, and a door 631 provided vertically at the front of the storage box 631 to form a front portion of the main body 61. Rails 65 may be provided on the side surfaces of the drawer 63 to allow forward, multi-stage withdrawal and insertion of the drawer 63. Thus, the drawer movement apparatus as described above and as shown in
The refrigerator 70 shown in
The upper storage compartment 74 may be compartmentalized into a plurality of compartments laterally, from front to rear, or other arrangements as appropriate. A plurality of storage boxes 76 may be stacked and housed within the upper storage compartment 74. The drawer 73 provided in the lower storage compartment 75 may include a storage box 732 and a door 731 provided at the front of the storage box 732. Rails 76 may be provided on the sides of the drawer 73 to permit withdrawal/insertion in stages. A drawer movement structure as described above and as shown in
A refrigerator is provided that does not require a handle structure to withdraw a storage box therefrom.
A refrigerator is provided that allows for automatic withdrawal of a storage box from the refrigerator by means of an improved withdrawing structure.
A refrigerator is provided that has a structure for fixedly installing a driving unit that withdraws a storage box from and inserts a storage box into the refrigerator while minimizing reductions in interior storage volume and insulating effectiveness of the refrigerator.
A refrigerator is provided that can consistently withdraw a storage box from and insert a storage box into the refrigerator at a preset speed regardless of the weight of food stored therein is also provided.
In one embodiment, a refrigerator as broadly described herein may include a main body provided with at least one of a refrigeration compartment and a freezer compartment; an evaporator provided at a side of the main body to generate cold air; a drawer for storing food provided to the refrigeration compartment or the freezer compartment, the drawing being capable of being withdrawn; a rolling member provided at a rear of the drawer; a guide member extending from front to rear on side surfaces of the refrigeration compartment or the freezer compartment, to guide movement of the rolling member; and a drive motor providing rotational force to the rolling member.
In another embodiment, a refrigerator as broadly described herein may include a main body provided with one or all of a refrigeration compartment maintained at a temperature above freezing and a freezer compartment maintained at a temperature below freezing; an evaporator provided on the main body to generate cold air; a compressor compressing refrigerant that passes through the evaporator; a condenser condensing refrigerant that passes through the compressor; an expansion member expanding refrigerant that passes through the condenser to a low temperature and low pressure; a drawer housed in at least one of the refrigeration compartment and the freezer compartment, and provided without a handle structure for grasping on an outer surface thereof; an anti-wobble apparatus preventing wobbling of the drawer while the drawer is being moved; a drive motor integrally provided on a portion of the anti-wobble apparatus; an input button for inputting a moving command of the drawer; and a signal transmitter provided to transmit a driving command input through the input button to the drive motor.
In another embodiment, a refrigerator as broadly described herein may include a main body provided with a refrigeration compartment or a freezer compartment; an evaporator provided in the main body to generate cold air; a compressor for compressing refrigerant that passes through the evaporator; a condenser for condensing refrigerant that passes through the compressor; an expansion member for expanding refrigerant that passes through the condenser to a low temperature and low pressure; a drawer that is withdrawn in a straight line from an inside of the refrigeration compartment or the freezer compartment; and a withdrawing apparatus provided with a driving force generator generating driving force for withdrawing the drawer, and a driving force transmitter enabling the drawer to be withdrawn through the driving force, wherein at least the driving force generator moves together with the drawer.
A movement structure for a storage box of a refrigerator and a refrigerator equipped with such a movement structure allows the storage box to be automatically withdrawn or inserted, thus providing greater convenience of use. Moreover, because the storage box can be withdrawn automatically, the storage box can be conveniently withdrawn regardless of the weight of food stored in the storage box.
Additionally, a separate handle is not required for withdrawing and inserting a storage box from/into a refrigerator. This allows the external design of the refrigerator to have a clean finish, and the space in which the refrigerator is installed to be effectively utilized.
Further, because the drive motor moves together with the storage box uses a minimal amount of storage space and has a minimal effect on the insulation qualities of the refrigerator main body.
Any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” “certain embodiment,” “alternative embodiment,” etc., means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment as broadly described herein. The appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with any embodiment, it is submitted that it is within the purview of one skilled in the art to effect such feature, structure, or characteristic in connection with other ones of the embodiments.
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various numerous variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
This application is a continuation-in-part of PCT Application No. PCT/KR2008/001695 filed on Mar. 26, 2008. This document is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5280227 | Bashark | Jan 1994 | A |
5392951 | Gardner et al. | Feb 1995 | A |
5445294 | Gardner et al. | Aug 1995 | A |
5899083 | Peterson et al. | May 1999 | A |
5940306 | Gardner et al. | Aug 1999 | A |
6130621 | Weiss | Oct 2000 | A |
6779855 | Hoffman | Aug 2004 | B2 |
7063398 | Hoffman | Jun 2006 | B2 |
7282884 | Huber et al. | Oct 2007 | B2 |
7407210 | Arbaugh et al. | Aug 2008 | B2 |
7484817 | Hoffman et al. | Feb 2009 | B2 |
7533947 | Kim et al. | May 2009 | B2 |
7587907 | Kim et al. | Sep 2009 | B2 |
7594707 | Kunkle et al. | Sep 2009 | B2 |
7602135 | Huber et al. | Oct 2009 | B2 |
7641707 | Kang et al. | Jan 2010 | B2 |
7688015 | Wenzel et al. | Mar 2010 | B2 |
7731314 | Kim | Jun 2010 | B2 |
7784888 | Oh et al. | Aug 2010 | B2 |
7802515 | Suetsugu | Sep 2010 | B2 |
7812561 | Hagen et al. | Oct 2010 | B2 |
20020171335 | Held | Nov 2002 | A1 |
20040035129 | Kaiser | Feb 2004 | A1 |
20040100165 | Hoffman | May 2004 | A1 |
20040100166 | Hoffman | May 2004 | A1 |
20040100169 | Huber et al. | May 2004 | A1 |
20050284113 | Jang et al. | Dec 2005 | A1 |
20060061245 | Huber et al. | Mar 2006 | A1 |
20060087207 | Oh et al. | Apr 2006 | A1 |
20060087208 | Oh et al. | Apr 2006 | A1 |
20060096304 | Kim et al. | May 2006 | A1 |
20060104756 | Kim et al. | May 2006 | A1 |
20060196198 | Kim et al. | Sep 2006 | A1 |
20060207283 | Kim et al. | Sep 2006 | A1 |
20060226749 | Kim | Oct 2006 | A1 |
20060242988 | Kim et al. | Nov 2006 | A1 |
20060261775 | Huber et al. | Nov 2006 | A1 |
20060267461 | Hoffman | Nov 2006 | A1 |
20070013274 | Hoffman | Jan 2007 | A1 |
20070170828 | Hoshide et al. | Jul 2007 | A1 |
20070256036 | Johnson et al. | Nov 2007 | A1 |
20080018215 | Carden et al. | Jan 2008 | A1 |
20080116777 | Kappler et al. | May 2008 | A1 |
20080163639 | Hwang | Jul 2008 | A1 |
20080302114 | Kelly et al. | Dec 2008 | A1 |
20090091223 | Hagen et al. | Apr 2009 | A1 |
20090102338 | Wenzel et al. | Apr 2009 | A1 |
20090160297 | Anikhindi et al. | Jun 2009 | A1 |
20090199484 | Zipp | Aug 2009 | A1 |
20090206715 | Scheffknecht et al. | Aug 2009 | A1 |
20090243454 | Yoo et al. | Oct 2009 | A1 |
20090248205 | Yu et al. | Oct 2009 | A1 |
20090248207 | Yoo et al. | Oct 2009 | A1 |
20090254221 | Kang | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
0779484 | Jun 1997 | EP |
1990-103388 | Apr 1990 | JP |
1990-106686 | Apr 1990 | JP |
1990-136686 | May 1990 | JP |
1990-146487 | Jun 1990 | JP |
1991-045820 | Feb 1991 | JP |
07-174459 | Jul 1995 | JP |
1995-174459 | Jul 1995 | JP |
1999-094455 | Apr 1999 | JP |
2005-326044 | Nov 2005 | JP |
2006-023039 | Jan 2006 | JP |
2006-046741 | Feb 2006 | JP |
2006-046748 | Feb 2006 | JP |
2006-145055 | Jun 2006 | JP |
2006-250485 | Sep 2006 | JP |
2007-017018 | Jan 2007 | JP |
2007-093208 | Apr 2007 | JP |
2007-132605 | May 2007 | JP |
2008-8550 | Jan 2008 | JP |
2008-196744 | Aug 2008 | JP |
2008-196752 | Aug 2008 | JP |
2009-036433 | Feb 2009 | JP |
1999-003684 | Jan 1999 | KR |
20-0301747 | Jan 2003 | KR |
20-0334077 | Nov 2003 | KR |
2006-0025806 | Mar 2006 | KR |
10-0634366 | Oct 2006 | KR |
2007-008046 | Jan 2008 | KR |
WO2007009783 | Jan 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090241589 A1 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/KR2008/001695 | Mar 2008 | US |
Child | 12390520 | US |