The present invention relates to the technical field of refrigerators, and in particular to a refrigerator.
With the improvement of people's life quality, a gradually increasing storage requirement for a refrigerator makes refrigerator products with a large capacity become popular. However, an enlarged capacity will lead to a correspondingly increased size of the refrigerator, and the door body of the refrigerator will also become taller and wider. Because users will frequently open the large-sized door body when they fetch goods, cooling capacity in the refrigerator will leak heavily which causes a compressor to frequently start and thus leads to increased energy consumption of the refrigerator. In addition, due to the deeper depth of the refrigerator, it will be more difficult for users to fetch goods if the goods are not placed in good classification, when a large number of goods are stored in the refrigerator.
When the secondary door 03 is opened, an angle between the secondary door 03 and the refrigerator door 01 will become larger as the secondary door 03 rotates about the revolving shaft 04, leading to increased space occupied by the refrigerator. The secondary door 03 will occupy a certain external space when it is fully opened, causing unnecessary limitations. And, the secondary door 03 sometimes blocks in front of the human body and thus increases the difficulty in fetching goods. In addition, opening the door each time will cause the full opening of the opening 02 on the refrigerator door 01. As a result, loss of cooling capacity remains heavy.
Embodiments of the present invention provide a refrigerator which may solves problems such as increased external space occupied by a refrigerator when its secondary door is opened, increased difficulty in fetching goods in the refrigerator, and heavy loss of cooling capacity resulted from the full opening of the opening.
In order to achieve this objective, the embodiments of the present invention adopt the following technical solution.
A refrigerator is provided, including a main door; an opening is formed on a door body of the main door; a guide rail is provided at an edge of the opening, and a secondary door is fitted on the guide rail; and the secondary door is connected with a driving mechanism which can drive the secondary door to slide along the guide rail, and as the secondary door slides along the guide rail, the secondary door can enclose or open the opening.
The embodiments of the present invention provide a refrigerator. The secondary door is provided on the main door. When users fetch goods, the opening on the main door can be opened by driving the secondary door to slide along the guide rail by the driving mechanism, so that it is possible to fetch the goods in the refrigerator; and the opening on the main door can be enclosed by driving the secondary door by the driving mechanism to slide along the guide rail in the opposite direction. With regard to the refrigerator provided by the embodiments of the present invention, a small-sized secondary door can be opened partially or fully when users fetch the commonly used goods, so as to reduce the loss of cooling capacity, fetch and place goods conveniently, and improve the user experience. Furthermore, the secondary door, when opened, is located in the main door and in a same plane as the main door, so that it will not block in front of the human body and will not exert an influence on the external space occupied by the refrigerator and the difficulty in fetching goods.
In order to describe technical solutions in the embodiments of the present invention or in the prior art more clearly, the accompanying drawings to be used for describing the embodiments or the prior art will be introduced briefly. Obviously, the accompanying drawings to be described below are merely some embodiments of the present invention, and a person of ordinary skill in the art can obtain other drawings according to those drawings without paying any creative effort.
The technical solutions in the embodiments of the present invention will be described clearly and completely with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the embodiments to be described are merely some but not all of embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by a person of ordinary skill in the art without paying any creative effort are included the protection scope of the present invention.
In the description of the present invention, it should be understood that orientation or location relationships indicated by terms “center”, “up”, “down”, “front”, “behind”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom”, “inside”, “outside” and the like are the orientation or location relationships based on the accompanying drawings, provided just for ease of describing the present invention and simplifying the description. They are not intended to indicate or imply that the stated devices or elements must have the specific orientation and be constructed and operated in the specific orientation. Hence, they shall not be understood as any limitation to the present invention.
Terms “first” and “second” are simply used for description, and shall not be understood to indicate or imply relative importance or to imply the amount of the stated technical features. Therefore, features defined with “first” and “second” can explicitly or impliedly include one or more such features. In the description of the present invention, “more” means “two or more than two”, unless otherwise specifically stated.
In the description of the present invention, it should be noted that, unless otherwise clearly specified and defined, terms “mount”, “connected with” and “connected to” should be understood in a broad sense, for example, it can be fixed connection, and can also be detachable connection or integral connection; and, it can be direct connection, can also be connection by intermediate members, and can be internal connection between two elements. For a person of ordinary skill in the art, the specific meaning of those terms in the present invention can be understood in specific circumstances.
The refrigerator mainly comprises a cabinet, a main door, a refrigerating system and a controlling system. A storage space is provided in the cabinet, and a storage space may be provided on one side of the main door close to the inside of the cabinet. Users can fetch goods in the above storage spaces by opening the main door. The refrigerating system comprises a compressor and so on, and is configured to lower temperature in the cabinet in order to refrigerate goods. The controlling system comprises a temperature controller and so on, and is configured to control the temperature in the cabinet to be within a range.
With regard to the refrigerator provided in this embodiment of the present invention, the secondary door 4 is provided on the main door 1, and the opening 2 on the main door 1 can be opened by driving the secondary door 4 to slide along the guide rail 3 by the driving mechanism 5 so that it is possible to fetch the goods in the refrigerator; and the opening 2 on the main door 1 can be enclosed by driving the secondary door 4 by the driving mechanism 5 to slide along the guide rail 3 in the opposite direction. With regard to the refrigerator provided in this embodiment of the present invention, the small-sized secondary door 4 can be opened partially or fully when users fetch the commonly used goods, so as to reduce the loss of cooling capacity in the refrigerator, fetch and place goods conveniently for users, and improve the user experience. Furthermore, the secondary door 4, when opened, is located in the main door 1 and in a same plane as the main door 1, so that it will not block in front of the human body and will not exert an influence on the external space occupied by the refrigerator and the difficulty in fetching goods. By opening the secondary door by sliding the secondary door 4 along the guide rail 3, the door hinge parts, which are easy to wear, are omitted, and the durability of the secondary door 4 is enhanced. In addition, the opening or enclosing of the secondary door 4 can be implemented by the driving mechanism 5, which is beneficial to the automation development of refrigerators.
The arrangement of the guide rail 3 at an edge of the opening 2 can be implemented in the following two ways. The first implementation way is to arrange the guide rail 3 at an edge of only one side of the opening 2. In this case, the sliding of the secondary door 4 can be implemented by limiting the edge of the one side of the secondary door 4 by the guide rail 3 on the corresponding one side, and as a result, the sliding stability of the secondary door 4 is relatively low. The second implementation way is to arrange parallel guide rails 3 at two opposite edges of the opening 2, respectively. Such implementation, in which edges of two sides of the secondary door 4 are limited by guide rails 3 on the two sides, makes the secondary door 4 slide more smoothly and stably. Therefore, it is preferable to arrange guide rails 3 at the two opposite edges of the opening 2, respectively.
In this embodiment, the driving mechanism 5 includes a motor 6 and a transmission assembly 7; an output shaft of the motor 6 is connected to the transmission assembly 7 in a transmission way, and the transmission assembly 7 is connected to the secondary door 4 in a transmission way; and the transmission assembly 7 can transform a rotary motion of the output shaft of the motor 6 to a linear motion to drive the secondary door 4 to slide along the guide rail 3. Power of the motor 6 is transmitted to the secondary door 4 by the transmission assembly 7, to drive the secondary door 4 to slide along the guide rail 3, so as to realize the opening and enclosing of the opening 2 on the main door 1.
In the above embodiment, because the second chute 74 is formed on the door body of the main door 1, strength at the corresponding position of the main door 1 will be reduced. If the second chute 74 is damaged, the main door 1 will be scraped entirely. In order to avoid this case, in another embodiment of the present invention, a support rod (not shown) perpendicular to the guide rail 3 is preferably arranged on the door body of the main door 1, and the second chute 74 is formed on the support rod. The third guide pin 732 is fitted inside the second chute 74. Therefore, when the second chute 74 is damaged, it is just needed to replace the support rod. This prevents the main door 1 from entirely scraping and also guarantees the strength of the main door 1 not being impacted.
In the above embodiment, because only some of teeth in the gear structure 721 are used during the swing process of the first connecting rod 72, in order to save material of the gear structure 721 and simplify its processing process, the gear structure 721 is preferably a sector gear structure as shown in
With reference to
Another implementation of the transmission assembly 7 can adopt a gear rack for transmission, including a transmission gear, a rack and a rack guide rail; the rack guide rail is fixed onto the door body of the main door 1, the gear guide rail is in parallel to the guide rail 3, and the rack can slide along the rack guide rail and one end of the rack is connected to the secondary door 4; and the transmission gear is connected with an output shaft of the motor 6 in a transmission way, and engaged with the rack. When the secondary door 4 changes to the opened state from the closed state, the motor 6 starts, and drives the transmission gear to rotate about the motor shaft counterclockwise. In this case, the rack engaged with the transmission gear slides along the rack guide rail so as to drive the secondary door 4 to slide along the guide rail 3 in a direction close to the transmission gear until the opening 2 is fully opened. When the secondary door 4 changes to the closed state from the opened state, the motor 6 starts, and drives the transmission gear to rotate about the motor shaft clockwise. In this case, the rack engaged with the transmission gear slides along the rack guide rail so as to drive the secondary door 4 to slide along the guide rail 3 in a direction away from the transmission gear until the opening 2 is fully closed. The rotary motion of the output shaft of the motor 6 is transformed to a linear motion by the gear rack. The secondary door 4 is driven to slide along the guide rail 3, so as to realize the opening and enclosing of the opening 2. Such transmission assembly 7 can ensure a constant transmission ratio, high transmission efficiency, and smooth and stable transmission, so that the secondary door 4 slides more smoothly and stably along the guide rail 3. In this way, the service life becomes longer.
In the above embodiment, there can be one transmission gear, one rack and one rack guide rail. The motor 6 drives this transmission gear to rotate when it starts. The rotation of the transmission gear drives the rack engaged with the transmission gear to slide along the rack guide rail, so as to drive the secondary door 4 to slide along the guide rail and thus to realize the opening and closing of the opening 2.
In another embodiment of the present invention, there can be two transmission gears, two racks and two rack guide rails. With reference to
As shown in
The operating process of the above embodiment is as follows. When the secondary door 4 moves from the opened position to the closed position, the output shaft of the motor 6 drives the driving wheel 705 to rotate counterclockwise, so as to pull the first transmission rope segment 7061 and release the second transmission rope segment 7062, so that the transmission rope located between the first guide wheel 703 and the second wheel 704 moves upward because of being partially stressed and then, guided by the guide block 701 and the guide rail 3 in terms of direction, pulls the sliding bottom plate 702 in order to drive the secondary door 4 to move upward to reach the closed position. When the secondary door 4 moves from the closed position to the opened position, the output shaft of the motor 6 drives the driving wheel 705 to rotate clockwise, so as to pull the second transmission rope segment 7062 and release the first transmission rope segment 7061, so that the transmission rope located between the first guide wheel 703 and the second wheel 704 moves downward and then, guided by the guide block 701 and the guide rail 3 in terms of direction, pulls the sliding bottom plate 702 in order to drive the secondary door 4 to move downward drive to reach the opened state. In a transmission structure shown in
In order to make the stressed direction of the secondary door consistent with the arrangement direction of the guide rail 3, a portion of the transmission rope 706 located between the first guide wheel 703 and the second wheel 704 can be made in parallel to the guide rail 3 by arranging the positions and sizes of the first guide wheel 703 and the second guide wheel 704. For example, the first guide wheel 703 and the second wheel 704 can be set to have an equal radius and their centers can be located in a same straight line. Therefore, the stressed direction of the secondary door is made consistent with the arrangement direction of the guide rail 3. This avoids jamming during the movement.
In order to prevent the first transmission rope segment 7061 and the second transmission rope segment 7062 wound onto the driving wheel 705 from interfering with each other, as shown in
Wherein, a length of the transmission rope 706 wound onto the driving wheel 705 should be enough to allow for a stroke traveled by the secondary door between the fully enclosed position and the fully opened position. As such, the whole movement of the secondary door between the fully enclosed position and the fully opened position can be ensured. Specifically, when the secondary door is in the fully enclosed position (that is, the position shown in
It should be noted that, when the secondary door moves to a limiting position, the portion of the transmission rope 706 wound onto the driving wheel 705 may have been fully released. Such limiting cases are also in the explanation scope of the “wind” in the embodiment of the present invention.
In the above embodiment, the transmission rope 706 can be a whole rope, and can also be separated into two segments. When the transmission rope 706 is a whole rope, the middle portion of the transmission rope 706 penetrates through and is connected with the sliding bottom plate 702. When the transmission rope 706 is separated into two segments, as shown in
As shown in
Wherein, the transmission rope 706 is preferably made of a steel rope which is more resistant to loss.
As shown in
Because the driving mechanism 5 of the secondary door 4 is arranged inside the door body of the main door 1, a thickness of a foam layer on the main door 1 at a corresponding position is reduced, and as a result, the thermal insulation performance of the main door 1 is decreased. In order to keep the thermal insulation performance of the main door 1, as shown in
In addition, with reference to
With reference to
To prolong the service life of the elastic projections 92 and improve the sealing performance and easy sliding at the junction of the secondary door 4 and the sealing strip 9, external surfaces of the elastic projections 92 are planted with fluff by flocking. Therefore, the friction resistance of the elastic projections 92 is increased, thereby prolonging the service time of the elastic projections 92 and improving the sealing performance and easy sliding at the junction of the secondary door 4 and the sealing strip 9.
Because the sealing strip 9 is arranged on the inner wall of the opening 2 and a temperature on the inner wall of the opening 2 is relatively low, the sealing strip 9 is required to keep a good elasticity at low temperature, so as to ensure the sealing performance of the opening 2. The material of the sealing strip 9 is preferably EPDM (Ethylene-Propylene-Diene Monomer), TPE (Thermoplastic Elastomer) or TPR (Thermoplastic Rubber). The three materials mentioned above have a good elasticity at low temperature, so that the sealing performance of the opening 2 is ensured.
In order to enhance the thermal insulation performance of the refrigerator, the secondary door 4 is made of heat insulating glass. The heat insulating glass may prevent cooling capacity inside the refrigerator from leaking, so that the thermal insulation performance of the refrigerator is enhanced. In addition, users may also check the storage condition of goods from the secondary door 4, when the main door 1 and the secondary door 4 are both closed. It is helpful to fetch goods.
The guide rail 3 in this embodiment can be arranged in a vertical direction, and in this case, the secondary door 4 can slide up and down along the guide rail 3. In addition, as shown in
With reference to
The above description is merely specific implementation of the present invention, and the protection scope of the present invention is not limited thereto. Changes or replacements readily obtained by any technical person who is familiar with the technical field within the disclosed technical scope of the present invention should be included in the protection scope of the present invention. Therefore, the protection scope of the present invention should be subject to the protection scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
2015 1 0009262 | Jan 2015 | CN | national |
2015 1 0107398 | Mar 2015 | CN | national |
This application is a Bypass Continuation Application of PCT/CN2015/095263 filed Nov. 23, 2015, which claims priority to Chinese Patent Application No. 201510009262.9, submitted to Chinese Patent Office on Jan. 7, 2015, titled “REFRIGERATOR”, and Chinese Patent Application No. 201510107398.3, submitted to Chinese Patent Office on Mar. 11, 2015, titled “REFRIGERATOR”, the entirety of each is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4177606 | Jeavons | Dec 1979 | A |
5595025 | MacPhail-Fausey | Jan 1997 | A |
6041549 | Schust | Mar 2000 | A |
6477806 | Asada | Nov 2002 | B1 |
8650800 | Anderson | Feb 2014 | B2 |
20060261220 | Lee | Nov 2006 | A1 |
20090188168 | Shirai | Jul 2009 | A1 |
20100072870 | Hwang | Mar 2010 | A1 |
20100281911 | Ha | Nov 2010 | A1 |
20100287838 | Kitayama | Nov 2010 | A1 |
20110023511 | Lee | Feb 2011 | A1 |
20110314740 | Mori | Dec 2011 | A1 |
20120103002 | Lee | May 2012 | A1 |
20130214664 | Yoon | Aug 2013 | A1 |
20150260443 | Lee | Sep 2015 | A1 |
20160061514 | Seo | Mar 2016 | A1 |
20160312532 | Kuhnl-Kinel | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
1699901 | Nov 2005 | CN |
102022889 | Apr 2011 | CN |
S47-7197 | Mar 1972 | JP |
S52-33818 | Mar 1977 | JP |
S58-188473 | Dec 1983 | JP |
S59-134673 | Sep 1984 | JP |
S60-1872 | Jan 1985 | JP |
H02-30884 | Feb 1990 | JP |
H07-276999 | Oct 1995 | JP |
H08-117123 | May 1996 | JP |
2003-003724 | Jan 2003 | JP |
2010-71565 | Apr 2010 | JP |
2011-246988 | Dec 2011 | JP |
10-2010-0071306 | Jun 2010 | KR |
Entry |
---|
International Search Report and Written Opinion PCT/CN2015/095263 dated Jan. 27, 2016. |
Notification of First Rejection of Japanese Patent Application No. 2016-547910 dated Jun. 27, 2017 (with English translation). |
Notification of Final Rejection of Japanese Patent Application No. 2016-547910 dated Mar. 16, 2018 (with English translation). |
Office Action in Korean Application No. 10-2017-7004292 dated Feb. 16, 2017 (with English translation). |
Extended European Search Report issued in European Application No. 15876661.8 dated Jul. 20, 2017. |
First Office Action issued in Chinese Application No. 201510107398.3 dated Jan. 2, 2018 (with English translation). |
Number | Date | Country | |
---|---|---|---|
20170097184 A1 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2015/095263 | Nov 2015 | US |
Child | 15387929 | US |