Refuse vehicles collect a wide variety of waste, trash, and other material from residences and businesses. Operators of the refuse vehicles transport the material from various waste receptacles within a municipality to a storage or processing facility (e.g., a landfill, an incineration facility, a recycling facility, etc.).
Refuse vehicles typically include hydraulic actuators that drive various functions of the refuse vehicle, such as lifting refuse containers, packing refuse within a body assembly, ejecting refuse from a body assembly, and opening various doors and hatches. The extension and retraction of the hydraulic actuators, among other functions, is controlled by valves. Conventionally, these valves are placed near the front end of the body near the exhaust system of the refuse vehicle. These hydraulic valves and hydraulic lines coupled thereto have the potential to leak, directing hydraulic oil onto the exhaust components. The heat from the exhaust components causes the hydraulic oil to react, which is undesirable.
One embodiment relates to a refuse vehicle. The refuse vehicle includes a chassis, a body, a lift assembly, an ejector, a first hydraulic actuator, a second hydraulic actuator, a bracket and a valve assembly. The body is coupled to the chassis and defines a refuse compartment. The body includes a front wall positioned at a front end of the body. The lift assembly is coupled to the body. The lift assembly is configured to engage a refuse container and lift the refuse container to unload refuse into the refuse compartment. The ejector is slidably coupled to the body and positioned within the refuse compartment. The first hydraulic actuator is positioned to move the lift assembly between a raised position and a lowered position. The second hydraulic actuator is positioned to move the ejector longitudinally between a retracted position near the front wall and an extended position away from the front wall. The bracket is coupled to the front wall. The valve assembly is coupled to the bracket and fluidly coupled to at least one of the first hydraulic actuator or the second hydraulic actuator. The valve assembly is configured to facilitate controlling extension and retraction of the at least one of the first hydraulic actuator or the second hydraulic actuator. The valve assembly has a first end and a second end opposite the first end. The first end of the valve assembly is offset longitudinally and vertically from the second end.
Another embodiment relates to a vehicle. The vehicle includes a chassis, a cab coupled to the chassis, a body coupled to the chassis rearward of the cab, a bracket, and a valve assembly. The body defines a compartment and includes a front wall. The bracket has an arm coupled to the front wall. The arm extends rearward of the front wall into the compartment. The valve assembly is coupled to the bracket such that at least a portion of the valve assembly is disposed within the compartment.
Still another embodiment relates to a vehicle. The vehicle includes a chassis, a cab coupled to the chassis, a body coupled to the chassis rearward of the cab, a bracket, and a valve assembly. The body defines a compartment and includes a wall. The bracket has an arm and a plate coupled to the arm. The arm is coupled to and extends from the wall at a first angle into the compartment. The valve assembly is coupled to the plate such that (i) the valve assembly is oriented at a second angle and (ii) at least a portion of the valve assembly is disposed within the compartment.
This summary is illustrative only and is not intended to be in any way limiting. Other aspects, inventive features, and advantages of the devices or processes described herein will become apparent in the detailed description set forth herein, taken in conjunction with the accompanying figures, wherein like reference numerals refer to like elements.
Before turning to the figures, which illustrate certain exemplary embodiments in detail, it should be understood that the present disclosure is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology used herein is for the purpose of description only and should not be regarded as limiting.
According to an exemplary embodiment, a refuse vehicle (e.g., a front-loading refuse vehicle, a side-loading refuse vehicle, a rear-loading refuse vehicle, etc.) includes a chassis supported by a plurality of tractive elements, a cab coupled to the chassis, an engine positioned below the cab and configured to drive the tractive elements, and a body assembly positioned rearward of the cab that defines a refuse compartment that stores refuse for transport. A lift assembly is pivotally coupled to the body assembly and configured to engage, lift, and dump a refuse container such that refuse from the refuse container is stored in the refuse compartment of the body assembly. An ejector moves longitudinally through the refuse compartment to compact and/or eject the refuse out of the rear end of the body assembly. A tailgate is pivotally coupled to the body assembly such that the tailgate selectively prevents ejection of refuse. The lift assembly, the ejector, and the tailgate are all actuated through extension and retraction of various hydraulic actuators (e.g., hydraulic cylinders, etc.).
A valve assembly is configured to control the flow of hydraulic fluid to and/or from one or more hydraulic components (e.g., the hydraulic cylinders, tailgate hydraulic actuators, top door hydraulic actuators, fork hydraulic actuators, etc.). The valve assembly is coupled to a front wall of the body assembly. The valve assembly may be coupled to a support surface of a mounting bracket. The support surface and the valve assembly may be oriented between horizontal and vertical (e.g., such that a first end of the valve assembly may be positioned longitudinally forward of and vertically above a second end of the valve assembly, etc.). The mounting bracket may be arranged such that both the mounting bracket and the valve assembly extend within the refuse compartment. When the ejector is in a fully retracted position, the valve assembly and the mounting bracket may be positioned directly below the ejector and extend into a cavity defined thereby. This position of the valve assembly may be further rearward than that of a conventional refuse vehicle. The rearward positioning of the valve assembly may be facilitated by an angled orientation of the valve assembly, which prevents interference between the ejector and the valve assembly.
An exhaust system coupled to the engine may be positioned along the rear side of the cab adjacent the valve assembly. Valve assemblies and tubes fluidly coupled thereto are prone to leaking hydraulic fluid in certain circumstances. The placement of the valve assembly in a conventional refuse vehicle allows the leaked hydraulic fluid to spray directly onto the exhaust system, which can cause the hydraulic fluid to heat up and react. Advantageously, the rearward positioning of the valve assembly presented herein facilitates placing a cover between the valve assembly and the exhaust system. The cover may thereby prevent hydraulic oil from spraying onto the exhaust system. Additionally, the rearward positioning of the valve assembly may facilitate positioning the tubes such that the tubes extend from the valve assembly and into/within the refuse compartment, such that the front wall of the body assembly prevents a leak of hydraulic fluid along the length of a tube from spraying directly onto the exhaust system. Such an arrangement may facilitate easier routing of the tubes.
According to the exemplary embodiment shown in
According to an exemplary embodiment, the refuse vehicle 10 is configured to transport refuse from various waste receptacles or refuse containers within a municipality to a storage and/or processing facility (e.g., a landfill, an incineration facility, a recycling facility, etc.). As shown in
As shown in
As shown in
Referring to
As shown in
Together, the front wall 100, the side walls 102, the top wall 104, the bottom wall 106, and the tailgate 112 define a collection chamber (e.g., hopper, etc.) or volume, shown as refuse compartment 120. The front wall 100 extends substantially perpendicular to the longitudinal axis 90. The side walls 102 extend substantially perpendicular to the lateral axis 92. The top wall 104 and the bottom wall 106 extend substantially perpendicular to the vertical axis 94. The refuse compartment 120 includes a first section, shown as hopper volume 122, and a second section, shown as storage volume 124. The hopper volume 122 is positioned between the storage volume 124 and the cab 16 (i.e., refuse is loaded into a position of the refuse compartment 120 behind the cab 16 and stored in a position further toward the rear of the refuse compartment 120). An aperture, shown as hopper opening 126, is positioned above the hopper volume 122. The hopper opening 126 facilitates placement of refuse into the hopper volume 122. The refuse vehicle 10 may include a door or hatch that selectively extends across the hopper opening 126 to seal the hopper opening 126, thereby preventing refuse from escaping the refuse compartment 120 (e.g., due to wind, bumps in the road, etc.).
Referring to
Referring to
During operation of the refuse vehicle 10, loose refuse may be placed into the refuse compartment 120 where it may thereafter be compacted. The refuse compartment 120 may provide temporary storage for refuse during transport to a waste disposal site and/or a recycling facility. Refuse may initially be located in a refuse container placed by a customer. An operator may drive the refuse vehicle 10 to a location where the refuse container is located (e.g., a residence, a storefront, a factory, etc.). The operator may then bring the lift assembly 40 into the lowered position and steer the refuse vehicle 10 such that the forks 62 engage the refuse container. The operator may then bring the lift assembly into the raised position. In the raised position, refuse from the refuse container falls into the hopper volume 122 through the hopper opening 126. The operator may control the articulation actuators 64 to shake the refuse container and release any stuck refuse. The operator may then bring the lift assembly 40 into the lowered position and release the refuse container in preparation for engaging another refuse container. Once a sufficient amount of refuse has been loaded into the hopper volume 122, the operator may move the ejector 130 into a packing position between the retracted and extended positions. By moving into the packing position, the ejector 130 forces the refuse contained in the hopper volume 122 into the storage volume 124. If a sufficient amount of refuse is present in the storage volume 124, the ejector 130 may compress or compact the refuse. When the operator desires to empty the refuse from the refuse compartment 120, the operator may move the tailgate 112 to the open position, permitting refuse to exit the storage volume 124. The operator may then move the ejector 130 to the extended position, forcing the refuse out of the refuse compartment 120.
In the embodiment shown in
Referring to
In an alternative embodiment, the refuse vehicle 10 additionally or alternatively utilizes a pneumatic system that uses air or another compressed gas as the working fluid instead of hydraulic fluid. By way of example, the hydraulic pump 140 may instead be a compressor that pressurizes air from the surrounding atmosphere. The valve block 150 may instead include pneumatic valves configured to control the flow of compressed gas to the various actuators.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In some embodiments, other components are coupled to the exterior of the body 14. Referring to
Referring to
In conventional refuse vehicles, a valve block that controls the flows of hydraulic fluid is mounted vertically on the front wall of a body assembly. In such vehicles, a first end of the valve block is positioned directly above a second end of the valve block, and the valve block extends forward of the front wall. Each conduit leaving the valve block extends forward of the front wall, and the valve block and the tubes are exposed to the exhaust system. In certain circumstances, the valve block and/or the tubes leak hydraulic fluid. In this conventional arrangement, the hydraulic fluid may spray onto the exhaust system, which can be very hot during operation, causing the hydraulic fluid to react.
In the refuse vehicle 10 of the present disclosure, the valve block 150 is oriented between horizontal and vertical. This facilitates moving the valve block 150 rearward and beneath the ejector 130 without interfering with the ejector 130. This also facilitates running the tubes 154 inside of the refuse compartment 120, which in turn facilitates placing the front cover 220 in front of the valve block 150. The front cover 220 and the front wall 100 extend directly between (i) the exhaust system 270 and (ii) the valve block 150 and the tubes 154. Accordingly, the valve block 150 and the tubes 154 are physically separated from the exhaust system 270. In the event that the valve block 150 and/or the tubes 154 leak, the front cover 220 and the front wall 100 prevent the hydraulic fluid from reaching the exhaust system 270.
In other embodiments, the valve block is otherwise oriented. In the embodiment shown in
As utilized herein, the terms “approximately,” “about,” “substantially”, and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the disclosure as recited in the appended claims.
It should be noted that the term “exemplary” and variations thereof, as used herein to describe various embodiments, are intended to indicate that such embodiments are possible examples, representations, or illustrations of possible embodiments (and such terms are not intended to connote that such embodiments are necessarily extraordinary or superlative examples).
The term “coupled” and variations thereof, as used herein, means the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent or fixed) or moveable (e.g., removable or releasable). Such joining may be achieved with the two members coupled directly to each other, with the two members coupled to each other using a separate intervening member and any additional intermediate members coupled with one another, or with the two members coupled to each other using an intervening member that is integrally formed as a single unitary body with one of the two members. If “coupled” or variations thereof are modified by an additional term (e.g., directly coupled), the generic definition of “coupled” provided above is modified by the plain language meaning of the additional term (e.g., “directly coupled” means the joining of two members without any separate intervening member), resulting in a narrower definition than the generic definition of “coupled” provided above. Such coupling may be mechanical, electrical, or fluidic.
References herein to the positions of elements (e.g., “top,” “bottom,” “above,” “below”) are merely used to describe the orientation of various elements in the FIGURES. It should be noted that the orientation of various elements may differ according to other exemplary embodiments, and that such variations are intended to be encompassed by the present disclosure.
The hardware and data processing components used to implement the various processes, operations, illustrative logics, logical blocks, modules and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose single- or multi-chip processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine. A processor also may be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In some embodiments, particular processes and methods may be performed by circuitry that is specific to a given function. The memory (e.g., memory, memory unit, storage device) may include one or more devices (e.g., RAM, ROM, Flash memory, hard disk storage) for storing data and/or computer code for completing or facilitating the various processes, layers and modules described in the present disclosure. The memory may be or include volatile memory or non-volatile memory, and may include database components, object code components, script components, or any other type of information structure for supporting the various activities and information structures described in the present disclosure. According to an exemplary embodiment, the memory is communicably connected to the processor via a processing circuit and includes computer code for executing (e.g., by the processing circuit or the processor) the one or more processes described herein.
The present disclosure contemplates methods, systems and program products on any machine-readable media for accomplishing various operations. The embodiments of the present disclosure may be implemented using existing computer processors, or by a special purpose computer processor for an appropriate system, incorporated for this or another purpose, or by a hardwired system. Embodiments within the scope of the present disclosure include program products comprising machine-readable media for carrying or having machine-executable instructions or data structures stored thereon. Such machine-readable media can be any available media that can be accessed by a general purpose or special purpose computer or other machine with a processor. By way of example, such machine-readable media can comprise RAM, ROM, EPROM, EEPROM, or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code in the form of machine-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer or other machine with a processor. Combinations of the above are also included within the scope of machine-readable media. Machine-executable instructions include, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing machines to perform a certain function or group of functions.
Although the figures and description may illustrate a specific order of method steps, the order of such steps may differ from what is depicted and described, unless specified differently above. Also, two or more steps may be performed concurrently or with partial concurrence, unless specified differently above. Such variation may depend, for example, on the software and hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure. Likewise, software implementations of the described methods could be accomplished with standard programming techniques with rule-based logic and other logic to accomplish the various connection steps, processing steps, comparison steps, and decision steps.
It is important to note that the construction and arrangement of the refuse vehicle 10 and the valve block 150 as shown in the various exemplary embodiments is illustrative only. Additionally, any element disclosed in one embodiment may be incorporated or utilized with any other embodiment disclosed herein. Although only one example of an element from one embodiment that can be incorporated or utilized in another embodiment has been described above, it should be appreciated that other elements of the various embodiments may be incorporated or utilized with any of the other embodiments disclosed herein.
This application claims the benefit of U.S. Provisional Patent Application No. 62/674,894, filed May 22, 2018, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5681140 | Christenson | Oct 1997 | A |
5797715 | Christenson | Aug 1998 | A |
5919027 | Christenson | Jul 1999 | A |
5934858 | Christenson | Aug 1999 | A |
5934867 | Christenson | Aug 1999 | A |
5938394 | Christenson | Aug 1999 | A |
5951235 | Young et al. | Sep 1999 | A |
5967731 | Brandt | Oct 1999 | A |
5971694 | McNeilus et al. | Oct 1999 | A |
5984609 | Bartlett | Nov 1999 | A |
6033176 | Bartlett | Mar 2000 | A |
6062803 | Christenson | May 2000 | A |
6089813 | McNeilus et al. | Jul 2000 | A |
6120235 | Humphries et al. | Sep 2000 | A |
6123500 | McNeilus et al. | Sep 2000 | A |
6210094 | McNeilus et al. | Apr 2001 | B1 |
6213706 | Christenson | Apr 2001 | B1 |
6224318 | McNeilus et al. | May 2001 | B1 |
6315515 | Young et al. | Nov 2001 | B1 |
6336783 | Young et al. | Jan 2002 | B1 |
6350098 | Christenson | Feb 2002 | B1 |
6447239 | Young et al. | Sep 2002 | B2 |
6474928 | Christenson | Nov 2002 | B1 |
6565305 | Schrafel | May 2003 | B2 |
7070382 | Pruteanu et al. | Jul 2006 | B2 |
7284943 | Pruteanu et al. | Oct 2007 | B2 |
7556468 | Grata | Jul 2009 | B2 |
7559733 | Khan | Jul 2009 | B2 |
7559735 | Pruteanu et al. | Jul 2009 | B2 |
7878750 | Zhou et al. | Feb 2011 | B2 |
8182194 | Pruteanu et al. | May 2012 | B2 |
8215892 | Calliari | Jul 2012 | B2 |
8360706 | Addleman et al. | Jan 2013 | B2 |
8540475 | Kuriakose et al. | Sep 2013 | B2 |
8807613 | Howell et al. | Aug 2014 | B2 |
9216856 | Howell et al. | Dec 2015 | B2 |
9387985 | Gillmore et al. | Jul 2016 | B2 |
9880581 | Kuriakose et al. | Jan 2018 | B2 |
9981803 | Davis et al. | Apr 2018 | B2 |
10196205 | Betz, II et al. | Feb 2019 | B2 |
20060245882 | Khan et al. | Nov 2006 | A1 |
20160340120 | Curotto et al. | Nov 2016 | A1 |
20170247186 | Whitfield et al. | Aug 2017 | A1 |
20170341860 | Dodds et al. | Nov 2017 | A1 |
20180129241 | Kuriakose et al. | May 2018 | A1 |
20180026289 | Davis et al. | Sep 2018 | A1 |
20190161272 | Betz et al. | May 2019 | A1 |
20190193934 | Rocholl et al. | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
105059798 | Nov 2015 | CN |
0 778 228 | Jun 1997 | EP |
Entry |
---|
International Search Report and Written Opinion regarding Int'l. Application No. PCT PCT/US2019/033171, dated Jul. 25, 2019, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20190360600 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62674894 | May 2018 | US |