The field of art to which this invention generally pertains is methods and apparatus for making use of electrical energy to effect chemical changes.
There are many processes that can be used and have been used over the years to produce carbon black. The energy sources used to produce such carbon blacks over the years have, in large part, been closely connected to the raw materials used to convert hydrocarbon containing materials into carbon black. Residual refinery oils and natural gas have long been a resource for the production of carbon black. Energy sources have evolved over time in chemical processes such as carbon black production from simple flame, to oil furnace, to plasma, to name a few. As in all manufacturing, there is a constant search for more efficient and effective ways to produce such products. Varying flow rates and other conditions of energy sources, varying flow rates and other conditions of raw materials, increasing speed of production, increasing yields, reducing manufacturing equipment wear characteristics, etc. have all been, and continue to be, part of this search over the years.
The systems described herein meet the challenges described above, and additionally attain more efficient and effective manufacturing process.
A method of cooling a liner in a plasma chamber is described including, contacting the liner with or passing through the liner, at least one recycle gas to be used to create the plasma in the plasma chamber, to cool the plasma chamber liner and pre-heat the recycle gas, and returning the pre-heated recycle gas to the plasma chamber to create the plasma.
Additional embodiments include: the method described above where the liner is graphite; the method described above where the recycle gas passes through at least one cooling channel present in the liner; the method described above where at least one of the cooling channels are covered with at least one removable liner/channel cover; the method described above where the cover is removed to remove any carbon deposits in the channels; the method described above where the carbon deposits are formed from the presence of hydrocarbons in the recycle gas; the method described above where at least one channel is formed in a spiral cooling channel pattern; the method described above where at least one channel is formed in a substantially straight cooling channel pattern; the method described above including more than one channel; the method described above including a plenum to aid in the production of an even distribution of cooling gas in the channels; the method described above including adding an oxidizing gas to the recycle gas to reduce or eliminate the presence of hydrocarbons in the recycle gas and/or reduce the formation of carbon deposits; the method described above where the oxidizing gas is steam and/or carbon dioxide; the method described above including passing an oxidizing gas through at least one of the channels to remove any carbon deposits in the channel; the method described above where the oxidizing gas is steam and/or carbon dioxide; the method described above where the carbon deposits are formed from the presence of hydrocarbons in the recycle gas; the method described above where the liner contains a plurality of perforations providing an ingress for the pre-heated recycle gas; the method described above where the perforations comprise one to six sets of co-planar perforations along the plasma chamber; the method described above where the plasma chamber is cylindrical and the perforations are along the curved sections of the plasma chamber cylinder; the method described above where the perforations allow aspirational cooling; the method described above where the plasma chamber contains a plasma torch annulus, and the gas is recycled to inside and/or outside the torch annulus; the method described above where the plasma is generated using an AC power source; the method described above where the plasma is generated using a DC power source; the method described above including injecting a hydrocarbon feedstock into the chamber such that over 30% of the energy input into the system measured in Joules is transferred to the hydrocarbon feedstock within the first 1 second of injection; the method described above where the hydrocarbon feedstock is natural gas; the method described above where the hydrocarbon feedstock is injected downstream of the plasma creation; and the method described above where the hydrocarbon feedstock is injected upstream of the plasma creation.
These, and additional embodiments, will be apparent from the following descriptions.
The
The particulars shown herein are by way of example and for purposes of illustrative discussion of the various embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
The present invention will now be described by reference to more detailed embodiments. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. All publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety.
Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
Additional advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
Heat transfer or cooling mechanisms in the past have typically been external to the plasma chamber. For the furnace process, the burner does not need excessive cooling because of the inherent lower temperatures in the furnace process compared to a plasma process. An example of what could be considered as inefficient cooling/pre-heat of recycle gas can be found in published patent application US2014/190,179. The heat exchanger is located external to the plasma chamber resulting in inefficient cool down or lack of cool down in plasma chamber and an insufficiently heated recycle/plasma gas.
As described herein, the use of regenerative cooling enables higher plasma temperatures to be used in chemical processes without generating excessive plasma chamber liner temperatures. Previous uses of plasmas to make carbon black, for example, either limited the plasma temperatures which could be used, or used water cooling to limit the loss of, for example, graphite when used in the process, e.g. as a liner, to sublimation. As described herein, recycle plasma gas is used to cool the lining, e.g. graphite, with the gas ultimately to be used in the plasma chamber.
Energy absorbed in cooling the liner is returned to the process as preheated gas used in the plasma chamber, which can represent significant energy cost savings to the overall process. As mentioned previously, in published patent application US2014/190,179, the heat transfer mechanism is external to the plasma chamber. The system described herein provides for a simultaneously cooled plasma chamber liner and heated recycle/plasma gas by engineering and incorporating the cooling mechanism into the inner skin of the liner itself. The gas cools the liner by heat-transfer contact with the liner along various places in or on the liner. In one embodiment, the gas flows in channels cut into the liner. In another embodiment, the cut channels are covered with a removable cover or seal. This use of a removable liner cover or seal enables easy replacement of the liner should it get too hot, for example, and also allows easy access to the channels for cleaning or whatever other maintenance may be needed. Instead of using recycled plasma gas as described herein and lowering temperatures inside the chamber, an alternative would be to run the torch at higher power density (increased power with the same gas flow). With the recycled plasma gas system as described herein turned on the result would be chamber temperatures similar to the lower power density case without the recycled plasma gas system being used as described herein. The advantage would be the gas leaves the chamber at a higher temperature, giving it more usable enthalpy per unit of power consumed, leading to a more thermally efficient process.
While the perforations are shown in
Should the cooling recycle gas contain trace amounts of hydrocarbons or other contaminants which lead to the formation of carbon or other deposits in the cooling channels, such deposits can be easily removed so as not to limit or otherwise interfere with the cooling in the liner which would be otherwise achieved. Steam, carbon dioxide and/or other oxidizing gases can also be added to the recycle gas to help reduce the amount of hydrocarbons or other contaminants which may be present in the recycle cooling gas, again, so as to reduce or eliminate the deposition of carbon or other contaminants in the cooling channels. In addition, if any deposited carbon or other contaminants are deposited in the channels, feeding steam, carbon dioxide and/or other oxidizing gas into the channels can also assist in eliminating any such deposits from the channels.
It is advantageous to obtain as uniform a cooling as possible in the liner, e.g., to avoid formation of “hot spots” in or on the liner. Accordingly, it is beneficial to subject the liner to as uniform and continuous a contact with cooling gas as possible, either externally and/or internally One embodiment for achieving a more even distribution of cooling gas is the use of one or more spiral cooling channels in the liners, although one or more straight, curved, or otherwise non-spiral channels can be used as well, either in combination or instead of spiral channels. If multiple channels are used, the use of a plenum to help provide an even distribution of the cooling gases within the channels is also beneficial.
The size and spacing of the channels will of course depend on the temperatures being generated in the plasma and/or reaction chambers, and the amount of cooling desired. Typical temperatures in the plasma chamber range from about 2500° C. to about 6000° C. and about 1200° C. to about 3000° C. in the reaction chamber. The channels are typically machined in as grooves, e.g., using conventional graphite cutting techniques and equipment, and are typically square or rectangular in cross section, and can be any size to accommodate the amount of cooling desired, e.g., 15 to 30 millimeters (mm) across and 50 to 100 mm deep.
Typically, between about 2 and about 20 MegaWatts of power are employed to create the plasma. The energy as measured in Joules will first be employed to create the plasma, and then be subsequently absorbed into the walls of the reactor, transferred to the plasma gas that did not go through the annulus or the plasma zone, and either immediately absorbed by the hydrocarbon or transferred to the injected hydrocarbon from the walls or from the plasma gas. The energy is absorbed by the hydrocarbon in the first one second after injection in the amount of at least 20%, 30%, or 40% or greater as measured in Joules. This energy can be absorbed from the electrodes, the plasma gas, the wall of the reactors, etc.
A perforated liner to enable aspirational cooling of the liner can also be used. Not only could this allow cooling gases to pass through the liner more uniformly, but it could also accelerate passage of gases in the hottest areas to dissipate heat more quickly, again to assist in attaining more uniform cooling. The pores present in the liner could either be drilled into the liner, or their formation incorporated into the process of manufacturing of the (porous) graphite used to form the liner.
Depending on the shape of the plasma assembly, the cooling gases can also be used in the torch annulus and/or outside of the torch annulus. Gas heated in the channels can be added to the plasma chamber or to the plasma gas which then flows through the annulus between the electrodes, i.e., since not all torches have an annulus, the recycle gas can be added to the plasma or mixed into the plasma after the arc. The torch annulus is defined as the space between two nested, concentric hollow cylinders that are used as the positive and negative electrodes of the torch.
As described herein, the cooling gases are used to cool the liner with the gas used in the plasma chamber, and in doing so preheat the gas used in the chamber, thereby reducing the amount of energy required to heat the plasma chamber gases to achieve a given temperature.
Referring to the Figures, which are schematic representations of systems described herein, conventional plasma gas (11, 21 and 31) such as oxygen, nitrogen, argon, helium, air, hydrogen, etc. (used alone or in mixtures of two or more) is injected into a plasma forming zone (12 and 22, and below the perforations 37 in
Adding the heated cooling gas into the plasma gas stream (11) could potentially cause problems for the arc formed between the electrodes (10), so in some cases it may not be desirable. In these instances, all of or a portion of the cooling gas can instead get added to the plasma zone (22 and through perforations 37), preferably along the inside of the liner so that the gas provides additional protection for the liner from the hot plasma gas. The mixture then flows into the reaction zone (23 and 33) to contact the feedstock gas (24 and 34). It should also be noted, that that the direction of flow shown for the cooling gases (15 in
The Figures demonstrate liners with curved channels contained therein. However, it should be understood that the cooling of the liners can take place by simply passing the cooling recycle plasma gas along one or more surfaces of the liners (depending on liner design), or through the liner by virtue of the presence of one or more straight, curved, spiral or other shaped channels. Since there are numerous advantages associated with uniformity of cooling by and/or within the liner, if multiple channels are present in the liner, a plenum can be used to assist in leveling the flow into the respective channels to help produce more even heat distribution within the liner. The liners can also contain pores, or be porous, such that the cooling can take place as aspirational cooling. The size and shape of the liners, the pores and the cooling surfaces or channels will depend on the size and shapes of the plasma forming zone and reaction zone, the temperatures desired in each zone, the amount and rate of cooling desired, the specific plasma gas being used, etc. For example, the generation and use of plasma at temperatures in excess of 1000° C. are not uncommon, which is one reason temperature control can be important to the process.
The Figures show a narrowing plasma chamber that then expands to a larger area downstream of plasma generation. An alternative configuration can entail a plasma chamber that does not narrow, but can or cannot expand downstream of plasma generation. The regenerative cooling would still take place in the general vicinity of the plasma generation (plasma chamber). Additionally, the hydrocarbon injection can occur either upstream or downstream of the plasma generation and can be centrally injected rather than the side injection that is depicted in
Acceptable hydrocarbon feedstock includes any chemical with formula CnHx or CnHxOy where n is an integer, and x is between 1 and 2n+2, and y is between 0 and n. For example simple hydrocarbons such as: methane, ethane, propane, butane, etc. can be used, as well as aromatic feedstock such as benzene, toluene, methyl naphthalene, pyrolysis fuel oil, coal tar, coal, heavy oil, oil, bio-oil, bio-diesel, other biologically derived hydrocarbons, or the like. Also, unsaturated hydrodcarbon feedstocks can also be used, such as: ethylene, acetylene, butadiene, styrene and the like. Oxygenated hydrocarbons such as; ethanol, methanol, propanol, phenol, ether, and similar are also acceptable feedstocks. These examples are provided as non-limiting examples of acceptable hydrocarbon feedstocks which can further be combined and/or mixed with other acceptable components for manufacture. Hydrocarbon feedstock referred to herein, means that the majority of the feedstock is hydrocarbon in nature. A preferred hydrocarbon feedstock for this process is natural gas.
The recycle plasma gas is flowed through the channels in the liner which in addition to reducing the temperatures in the plasma and/or reaction chambers, raises the temperature of the cooling gas as well. After being heated, the recycle plasma gas is then used as is or mixed with the plasma gas being injected into the plasma zone. As can be appreciated, this pre-heating of the plasma gas can provide significant energy costs savings to the process.
In one embodiment, the channels are open and accessible, but covered or sealed during use. This accessibility facilitates such things as repair and replacement of the liners, and/or cleaning of the channels. For example, the plasma gas can contain hydrocarbons or other contaminants. At the high temperatures experienced in typical plasma processes, carbon or other deposits can end up on the liner or in the channels or pores. A removable cover or seal can facilitate the cleaning of such deposits. The covers are typically made of the same material as the liners, but can also be made of a porous material (e.g., carbon fibers, graphite foam, etc).
Even without the covers or seals described above, another way to reduce or eliminate such deposits from the channels, is to add an oxidizing gas to the plasma forming gas prior to entry into the cooling channel. Similarly, an oxidizing gas can be simply run through the channels for the same purpose. Exemplary oxidizing gases could be steam and/or carbon dioxide, for example.
In some cases, the plasma forming zone may contain a conventional plasma torch annulus, as shown schematically in
In another set of cases, AC or DC power can be used to form the plasma. Examples of an AC plasma system can be found in U.S. Pat. No. 7,452,514, for example. The AC system can utilize a plurality of electrodes that has the advantage of more efficient energy consumption as well as reduced heat load at the electrode surface. Examples of a suitable DC plasma system can be found, for example, in U.S. Pat. No. 7,462,343, and the references therein.
Hydrogen gas is run through a conventional plasma torch electrode assembly in a plasma forming zone. Graphite liners with cooling channels line the plasma forming zone. As can be seen in the Table below, the average temperature of the plasma chamber wall is 2640 K and the maximum temperature is 3210 K. Through the diversion of 10%, 20%, and 30% of the total recycle gas, which is greater than 90% H2, the following examples B, C, and D show a significant decrease in plasma wall temperature. For diversion of 30% of the total recycle gas the average temperature at the plasma wall is reduced from 2640 K to 2450 K and the maximum temperature is reduced from 3210 K to 3040 K. Each of these examples is with a heat input through the plasma torch of 750 KW (kilo watts) and a plasma gas flow rate of 340 Nm3/hr (normal cubic meter/hour) of hydrogen.
Thus, the scope of the invention shall include all modifications and variations that may fall within the scope of the attached claims. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
The present application claims the benefit of and priority to provisional patent application Ser. No. 62/111,341 filed Feb. 3, 2015, the disclosure of which is herein incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/015942 | 2/1/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/126600 | 8/11/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1339225 | Rose | May 1920 | A |
1536612 | Lewis | May 1925 | A |
1597277 | Jakowsky | Aug 1926 | A |
2062358 | Frolich | Sep 1932 | A |
2002003 | Eisenhut et al. | May 1935 | A |
2393106 | Johnson et al. | Jan 1946 | A |
2557143 | Royster | Jun 1951 | A |
2572851 | Gardner et al. | Oct 1951 | A |
2603669 | Chappell | Jul 1952 | A |
2616842 | Sheer et al. | Nov 1952 | A |
2785964 | Pollock | Mar 1957 | A |
2850403 | Day | Sep 1958 | A |
2951143 | Anderson et al. | Aug 1960 | A |
3009783 | Sheer et al. | Nov 1961 | A |
3073769 | Doukas | Jan 1963 | A |
3288696 | Orbach | Nov 1966 | A |
3307923 | Ruble | Mar 1967 | A |
3308164 | Shepard | Mar 1967 | A |
3309780 | Goins | Mar 1967 | A |
3331664 | Jordan | Jul 1967 | A |
3344051 | Latham, Jr. | Sep 1967 | A |
3408164 | Johnson | Oct 1968 | A |
3409403 | Bjornson et al. | Nov 1968 | A |
3420632 | Ryan | Jan 1969 | A |
3431074 | Jordan | Mar 1969 | A |
3464793 | Jordan et al. | Sep 1969 | A |
3619140 | Morgan et al. | Nov 1971 | A |
3637974 | Tajbl et al. | Jan 1972 | A |
3673375 | Camacho | Jun 1972 | A |
3725103 | Jordan et al. | Apr 1973 | A |
3922335 | Jordan et al. | Nov 1975 | A |
3981654 | Rood et al. | Sep 1976 | A |
3981659 | Myers | Sep 1976 | A |
3984743 | Horie | Oct 1976 | A |
4028072 | Braun et al. | Jun 1977 | A |
4035336 | Jordan et al. | Jul 1977 | A |
4057396 | Matovich | Nov 1977 | A |
4075160 | Mills et al. | Feb 1978 | A |
4101639 | Surovikin et al. | Jul 1978 | A |
4199545 | Matovich | Apr 1980 | A |
4282199 | Lamond et al. | Aug 1981 | A |
4289949 | Raaness et al. | Sep 1981 | A |
4317001 | Silver et al. | Feb 1982 | A |
4372937 | Johnson | Feb 1983 | A |
4404178 | Johnson et al. | Sep 1983 | A |
4452771 | Hunt | Jun 1984 | A |
4472172 | Sheer et al. | Sep 1984 | A |
4553981 | Fuderer | Nov 1985 | A |
4601887 | Dorn et al. | Jul 1986 | A |
4678888 | Camacho et al. | Jul 1987 | A |
4689199 | Eckert et al. | Aug 1987 | A |
4787320 | Raaness et al. | Nov 1988 | A |
4864096 | Wolf et al. | Sep 1989 | A |
4977305 | Severance, Jr. | Dec 1990 | A |
5039312 | Hollis, Jr. et al. | Aug 1991 | A |
5045667 | Iceland et al. | Sep 1991 | A |
5046145 | Drouet | Sep 1991 | A |
5105123 | Ballou | Apr 1992 | A |
5147998 | Tsantrizos et al. | Sep 1992 | A |
5206880 | Olsson | Apr 1993 | A |
5352289 | Weaver et al. | Oct 1994 | A |
5399957 | Vierboom et al. | Mar 1995 | A |
5476826 | Greenwald et al. | Dec 1995 | A |
5481080 | Lynum et al. | Jan 1996 | A |
5486674 | Lynum et al. | Jan 1996 | A |
5500501 | Lynum et al. | Mar 1996 | A |
5527518 | Lynum et al. | Jun 1996 | A |
5593644 | Norman et al. | Jan 1997 | A |
5604424 | Shuttleworth | Feb 1997 | A |
5611947 | Vavruska | Mar 1997 | A |
5673285 | Wittle et al. | Sep 1997 | A |
5717293 | Sellers | Feb 1998 | A |
5725616 | Lynum et al. | Mar 1998 | A |
5749937 | Detering et al. | May 1998 | A |
5935293 | Detering et al. | Aug 1999 | A |
5951960 | Lynum et al. | Sep 1999 | A |
5989512 | Lynum et al. | Nov 1999 | A |
5997837 | Lynum et al. | Dec 1999 | A |
6068827 | Lynum et al. | May 2000 | A |
6099696 | Schwob et al. | Aug 2000 | A |
6188187 | Harlan | Feb 2001 | B1 |
6197274 | Mahmud et al. | Mar 2001 | B1 |
6358375 | Schwob | Mar 2002 | B1 |
6380507 | Childs | Apr 2002 | B1 |
6395197 | Detering et al. | May 2002 | B1 |
6403697 | Mitsunaga et al. | Jun 2002 | B1 |
6441084 | Lee et al. | Aug 2002 | B1 |
6442950 | Tung | Sep 2002 | B1 |
6444727 | Yamada et al. | Sep 2002 | B1 |
6602920 | Hall et al. | Aug 2003 | B2 |
6703580 | Brunet et al. | Mar 2004 | B2 |
6773689 | Lynum et al. | Aug 2004 | B1 |
6955707 | Ezell et al. | Oct 2005 | B2 |
7167240 | Stagg | Jan 2007 | B2 |
7312415 | Ohmi et al. | Dec 2007 | B2 |
7431909 | Rumpf et al. | Oct 2008 | B1 |
7452514 | Fabry et al. | Nov 2008 | B2 |
7462343 | Lynum et al. | Dec 2008 | B2 |
7563525 | Ennis | Jul 2009 | B2 |
7655209 | Rumpf et al. | Feb 2010 | B2 |
7777151 | Kuo | Aug 2010 | B2 |
8147765 | Muradov et al. | Apr 2012 | B2 |
8221689 | Boutot et al. | Jul 2012 | B2 |
8257452 | Menzel | Sep 2012 | B2 |
8277739 | Monsen et al. | Oct 2012 | B2 |
8323793 | Hamby et al. | Dec 2012 | B2 |
8443741 | Chapman et al. | May 2013 | B2 |
8471170 | Li et al. | Jun 2013 | B2 |
8486364 | Vanier et al. | Jul 2013 | B2 |
8501148 | Belmont et al. | Aug 2013 | B2 |
8581147 | Kooken et al. | Nov 2013 | B2 |
8710136 | Yurovskaya et al. | Apr 2014 | B2 |
8771386 | Licht et al. | Jul 2014 | B2 |
8784617 | Novoselov et al. | Jul 2014 | B2 |
8850826 | Ennis | Oct 2014 | B2 |
8911596 | Vancina | Dec 2014 | B2 |
9095835 | Skoptsov | Aug 2015 | B2 |
9315735 | Cole et al. | Apr 2016 | B2 |
9445488 | Foret | Sep 2016 | B2 |
9574086 | Johnson et al. | Feb 2017 | B2 |
10138378 | Hoermman et al. | Nov 2018 | B2 |
20010029888 | Sindarrajan et al. | Oct 2001 | A1 |
20010039797 | Cheng | Nov 2001 | A1 |
20020000085 | Hall et al. | Jan 2002 | A1 |
20020050323 | Moisan et al. | May 2002 | A1 |
20020051903 | Masuko et al. | May 2002 | A1 |
20020157559 | Brunet et al. | Oct 2002 | A1 |
20030103858 | Baran et al. | Jun 2003 | A1 |
20030152184 | Shehanee et al. | Aug 2003 | A1 |
20040047779 | Denison | Mar 2004 | A1 |
20040071626 | Smith et al. | Apr 2004 | A1 |
20040081862 | Herman | Apr 2004 | A1 |
20040148860 | Fletcher | Aug 2004 | A1 |
20040168904 | Anazawa et al. | Sep 2004 | A1 |
20040211760 | Delzenne et al. | Oct 2004 | A1 |
20040216559 | Kim et al. | Nov 2004 | A1 |
20040247509 | Newby | Dec 2004 | A1 |
20050063892 | Tandon et al. | Mar 2005 | A1 |
20050230240 | Dubrovsky et al. | Oct 2005 | A1 |
20060037244 | Clawson | Feb 2006 | A1 |
20060068987 | Bollepalli et al. | Mar 2006 | A1 |
20060107789 | Deegan et al. | May 2006 | A1 |
20060226538 | Kawata | Oct 2006 | A1 |
20060239890 | Chang et al. | Oct 2006 | A1 |
20070140004 | Marotta et al. | Jun 2007 | A1 |
20070183959 | Charlier et al. | Aug 2007 | A1 |
20070270511 | Melnichuk et al. | Nov 2007 | A1 |
20080041829 | Blutke et al. | Feb 2008 | A1 |
20080121624 | Belashchenko et al. | May 2008 | A1 |
20080169183 | Hertel et al. | Jul 2008 | A1 |
20080182298 | Day | Jul 2008 | A1 |
20080226538 | Rumpf et al. | Sep 2008 | A1 |
20080279749 | Probst et al. | Nov 2008 | A1 |
20080292533 | Belmont et al. | Nov 2008 | A1 |
20090014423 | Li et al. | Jan 2009 | A1 |
20090090282 | Gold et al. | Apr 2009 | A1 |
20090142250 | Fabry et al. | Jun 2009 | A1 |
20090155157 | Stenger et al. | Jun 2009 | A1 |
20090173252 | Nakata et al. | Jul 2009 | A1 |
20090208751 | Green et al. | Aug 2009 | A1 |
20090230098 | Salsich et al. | Sep 2009 | A1 |
20100249353 | MacIntosh et al. | Sep 2010 | A1 |
20110036014 | Tsangaris et al. | Feb 2011 | A1 |
20110071692 | D'Amato et al. | Mar 2011 | A1 |
20110076608 | Bergemann et al. | Mar 2011 | A1 |
20110155703 | Winn | Jun 2011 | A1 |
20110180513 | Luhrs et al. | Jul 2011 | A1 |
20110239542 | Liu et al. | Oct 2011 | A1 |
20120018402 | Carducci et al. | Jan 2012 | A1 |
20120025693 | Wang et al. | Feb 2012 | A1 |
20120201266 | Boulos et al. | Aug 2012 | A1 |
20120232173 | Juranitch et al. | Sep 2012 | A1 |
20120292794 | Prabhu | Nov 2012 | A1 |
20130039841 | Nester et al. | Feb 2013 | A1 |
20130062195 | Samaranayake et al. | Mar 2013 | A1 |
20130062196 | Sin | Mar 2013 | A1 |
20130092525 | Li et al. | Apr 2013 | A1 |
20130194840 | Huselstein et al. | Aug 2013 | A1 |
20130292363 | Hwang et al. | Nov 2013 | A1 |
20130323614 | Chapman et al. | Dec 2013 | A1 |
20130340651 | Wampler et al. | Dec 2013 | A1 |
20140057166 | Yokoyama et al. | Feb 2014 | A1 |
20140131324 | Shipulski et al. | May 2014 | A1 |
20140190179 | Barker et al. | Jul 2014 | A1 |
20140224706 | Do et al. | Aug 2014 | A1 |
20140227165 | Hung et al. | Aug 2014 | A1 |
20140248442 | Luizi et al. | Sep 2014 | A1 |
20140290532 | Rodriguez et al. | Oct 2014 | A1 |
20140294716 | Susekov et al. | Oct 2014 | A1 |
20140339478 | Probst et al. | Nov 2014 | A1 |
20140357092 | Singh | Dec 2014 | A1 |
20140373752 | Hassinen et al. | Dec 2014 | A2 |
20150044516 | Kyrlidis et al. | Feb 2015 | A1 |
20150056516 | Hellring et al. | Feb 2015 | A1 |
20150064099 | Nester et al. | Mar 2015 | A1 |
20150180346 | Yuzurihara et al. | Jun 2015 | A1 |
20150210856 | Johnson et al. | Jul 2015 | A1 |
20150210857 | Johnson et al. | Jul 2015 | A1 |
20150210858 | Hoermann et al. | Jul 2015 | A1 |
20150211378 | Johnson et al. | Jul 2015 | A1 |
20150217940 | Si et al. | Aug 2015 | A1 |
20150218383 | Johnson et al. | Aug 2015 | A1 |
20150223314 | Hoermann et al. | Aug 2015 | A1 |
20160030856 | Kaplan et al. | Feb 2016 | A1 |
20160210856 | Assenbaum et al. | Jul 2016 | A1 |
20160243518 | Spitzl | Aug 2016 | A1 |
20160293959 | Blizanac et al. | Oct 2016 | A1 |
20170034898 | Moss et al. | Feb 2017 | A1 |
20170037253 | Hardman et al. | Feb 2017 | A1 |
20170058128 | Johnson et al. | Mar 2017 | A1 |
20170066923 | Hardman et al. | Mar 2017 | A1 |
20170073522 | Hardman et al. | Mar 2017 | A1 |
20170349758 | Johnson | Dec 2017 | A1 |
20180015438 | Taylor et al. | Jan 2018 | A1 |
20180016441 | Taylor et al. | Jan 2018 | A1 |
20180022925 | Hardman et al. | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
2897071 | Nov 1972 | AU |
830378 | Dec 1969 | CA |
964 405 | Mar 1975 | CA |
2 353 752 | Jan 2003 | CA |
2 621 749 | Aug 2009 | CA |
1644650 | Jul 2005 | CN |
101092691 | Dec 2007 | CN |
102108216 | Jun 2011 | CN |
102993788 | Mar 2013 | CN |
103160149 | Jun 2013 | CN |
203269847 | Nov 2013 | CN |
211457 | Jul 1984 | DE |
198 07 224 | Aug 1999 | DE |
0 325 689 | Aug 1989 | EP |
0 616 600 | Sep 1994 | EP |
0 635 044 | Feb 1996 | EP |
0 635 043 | Jun 1996 | EP |
0 861 300 | Sep 1998 | EP |
1 188 801 | Mar 2002 | EP |
1 088 854 | Apr 2010 | EP |
2 891 434 | Mar 2007 | FR |
2 937 029 | Apr 2010 | FR |
395 893 | Jul 1933 | GB |
987498 | Mar 1965 | GB |
1 400 266 | Jul 1975 | GB |
1 492 346 | Nov 1977 | GB |
4-228270 | Aug 1992 | JP |
6-322615 | Nov 1994 | JP |
9-316645 | Dec 1997 | JP |
11-123562 | May 1999 | JP |
2004-300334 | Oct 2004 | JP |
2005-235709 | Sep 2005 | JP |
2005-243410 | Sep 2005 | JP |
10-2008-105344 | Dec 2008 | KR |
2014-0075261 | Jun 2014 | KR |
2425795 | Aug 2011 | RU |
2488984 | Jul 2013 | RU |
9312031 | Jun 1993 | WO |
9318094 | Sep 1993 | WO |
9320153 | Oct 1993 | WO |
WO-9320152 | Oct 1993 | WO |
9323331 | Nov 1993 | WO |
1994008747 | Apr 1994 | WO |
9703133 | Jan 1997 | WO |
9813428 | Apr 1998 | WO |
WO-0018682 | Apr 2000 | WO |
03014018 | Feb 2003 | WO |
2012015313 | Feb 2012 | WO |
2012067546 | May 2012 | WO |
2012094743 | Jul 2012 | WO |
2012149170 | Nov 2012 | WO |
2013134093 | Sep 2013 | WO |
2013184074 | Dec 2013 | WO |
2013185219 | Dec 2013 | WO |
2014000108 | Jan 2014 | WO |
2014012169 | Jan 2014 | WO |
2015049008 | Apr 2015 | WO |
2015093947 | Jun 2015 | WO |
2015116797 | Aug 2015 | WO |
2015116798 | Aug 2015 | WO |
2015116800 | Aug 2015 | WO |
2015116807 | Aug 2015 | WO |
2015116811 | Aug 2015 | WO |
2015116943 | Aug 2015 | WO |
2016012367 | Jan 2016 | WO |
2016014641 | Aug 2016 | WO |
2016126598 | Aug 2016 | WO |
2016126599 | Aug 2016 | WO |
2016126600 | Aug 2016 | WO |
2017019683 | Feb 2017 | WO |
2017027385 | Feb 2017 | WO |
2017034980 | Mar 2017 | WO |
2017044594 | Mar 2017 | WO |
2017048621 | Mar 2017 | WO |
2017190015 | Nov 2017 | WO |
2017190045 | Nov 2017 | WO |
2018165483 | Sep 2018 | WO |
2018195460 | Oct 2018 | WO |
Entry |
---|
Bakken et al. “Thermal plasma process development in Norway.” Pure and applied Chemistry 70.6 (1998): 1223-1228. |
Breeze, “Raising steam plant efficiency—Pushing the steam cycle boundaries.” PEI Magazine 20.4 (2012). |
Chiesa et al., “Using Hydrogen as Gas Turbine Fuel”. ASME. J. Eng. Gas Turbines Power (2005),127(1):73-80. doi:10.1115/1.1787513. |
Donnet et al. “Observation of Plasma-Treated Carbon Black Surfaces by Scanning Tunnelling Microscopy,” Carbon (1994) 32(2):199-206. |
Larouche et al. “Nitrogen Functionalization of Carbon Black in a Thermo-Convective Plasma Reactor,” Plasma Chem Plasma Process (2011) 31:635-647. |
Polman et al., “Reduction of CO2 emissions by adding hydrogen to natural gas.” IEA Green House Gas R&D programme (2003). |
Reynolds, “Electrode Resistance: How Important is Surface Area” Oct. 10, 2016. p. 3 para[0001]; Figure 3; Retrieved from http://electrofishing.net/2016/10/10/electrode-resistance-how-important-is-surface-area/ on May 8, 2018. |
Tsujikawa, Y., and T. Sawada. “Analysis of a gas turbine and steam turbine combined cycle with liquefied hydrogen as fuel.” International Journal of Hydrogen Energy 7.6 (1982): 499-505. |
U.S. Environmental Protection Agency, “Guide to Industrial Assessments for Pollution Prevention and Energy Efficiency,” EPA 625/R-99/003, 1999. |
Verfondern, K., “Nuclear Energy for Hydrogen Production”, Schriften des Forschungzentrum Julich, vol. 58, 2007. |
Wikipedia “Heating Element” Oct. 14, 2016. p. 1 para[0001]. Retrieved from https://en.wikipedia.org/w/index.php?title=Heating_element&oldid=744277540 on May 9, 2018. |
Wikipedia “Joule Heating” Jan. 15, 2017. p. 1 para[0002]. Retrieved from https://en.wikipedia.org/w/index.php?title=Joule_heating&oldid=760136650 on May 9, 2018. |
Corrected Notice of Allowance dated Feb. 9, 2018 in U.S. Appl. No. 14/601,761. |
Extended European Search Report from EP Application No. 15743214.7 dated Jan. 16, 2018. |
Extended European Search Report from EP Application No. 16747055.8 dated Jun. 27, 2018. |
Extended European Search Report from EP Application No. 16747056.6 dated Jun. 27, 2018. |
Extended European Search Report from EP Application No. 16747057.4 dated Oct. 9, 2018. |
Extended European Search Report from EP Application No. 16835697.0 dated Nov. 28, 2018. |
Final Office Action dated Oct. 13, 2017 in U.S. Appl. No. 14/591,476. |
Final Office Action dated Oct. 13, 2017 in U.S. Appl. No. 14/591,541. |
Final Office Action dated Sep. 19, 2017 in U.S. Appl. No. 15/221,088. |
Final Office Action from U.S. Appl. No. 15/259,884, dated Oct. 11, 2018. |
Invitation to Pay Additional Fees dated Jun. 18, 2018 in PCT/US2018/028619. |
Invitation to Pay Additional Fees in PCT/US2018/048378 dated Oct. 26, 2018. |
Invitation to Pay Additional Fees in PCT/US2018/048381 dated Oct. 9, 2018. |
IPRP from PCT/US2015/013482, dated Aug. 2, 2016. |
IPRP from PCT/US2017/030139 dated Oct. 30, 2018. |
IPRP from PCT/US2017/030179 dated Oct. 30, 2018. |
ISR and Written Opinion for PCT/US2018/048374 dated Nov. 26, 2018. |
ISR and Written Opinion for PCT/US2018/048378 dated Dec. 20, 2018. |
ISR and Written Opinion for PCT/US2018/048381 dated Dec. 14, 2018. |
ISR and Written Opinion from PCT/US2018/021627, dated May 31, 2018. |
ISR and Written Opinion from PCT/US2018/028619, dated Aug. 9, 2018. |
Non-Final Office Action dated Apr. 20, 2018 in U.S. Appl. No. 15/221,088. |
Non-Final Office Action dated Jan. 16, 2018 in U.S. Appl. No. 14/591,528. |
Non-Final Office Action dated Jan. 9, 2018 in U.S. Appl. No. 15/259,884. |
Non-Final Office Action dated Jul. 6, 2018 in U.S. Appl. No. 15/241,771. |
Non-Final Office Action dated Jun. 1, 2018 in U.S. Appl. No. 15/262,539. |
Non-Final Office Action dated Jun. 7, 2018 in U.S. Appl. No. 14/591,476. |
Non-Final Office Action dated Jun. 7, 2018 in U.S. Appl. No. 15/410,283. |
Non-Final Office Action from U.S. Appl. No. 15/548,352 dated Oct. 10, 2018. |
Notice of Allowance dated Jan. 18, 2018 in U.S. Appl. No. 14/601,761. |
Notice of Allowance dated Jun. 19, 2018 in U.S. Appl. No. 14/601,761. |
Notice of Allowance dated Jun. 7, 2018 in U.S. Appl. No. 14/591,541. |
Search report from RU Application No. 2016135213 dated Feb. 12, 2018. |
Translation of Official Notification of RU Application No. 2016135213 dated Feb. 12, 2018. |
Invitation to Pay Additional Fees in PCT/US2018/057401 dated Dec. 19, 2018. |
Final Office Action for U.S. Appl. No. 15/262,539 dated Jan. 4, 2019. |
Gago et al., “Growth mechanisms and structure of fullerene-like carbon-based thin films: superelastic materials for tribological applications,” Trends in Fullerene Research, Published by Nova Science Publishers, Inc. (2007), pp. 1-46. |
ISR and Written Opinion from PCT/US2015/013482, dated Jun. 17, 2015. |
ISR and Written Opinion from PCT/US2015/013505, dated May 11, 2015. |
ISR and Written Opinion from PCT/US2015/013794, dated Jun. 19, 2015. |
Donnet, Basal and Wang, “Carbon Black”, New York: Marcel Dekker, 1993 pp. 46, 47 and 54. |
Boehm, HP, “Some Aspects of Surface Chemistry of Carbon Blacks and Other Carbons”, Carbon 1994, p. 759. |
“The Science and Technology of Rubber” (Mark, Erman, and Roland, Fourth Edition, Academic Press, 2013). |
“Carbon Black Elastomer Interaction” Rubber Chemistry and Technology, 1991, pp. 19-39. |
“The Impact of a Fullerene-Like Concept in Carbon Black Science”, Carbon, 2002, pp. 157-162. |
ISR and Written Opinion from PCT/US2015/013510, dated Apr. 22, 2015. |
ISR and Written Opinion from PCT/US2016/015939, dated Jun. 3, 2016. |
ISR and Written Opinion from PCT/US2016/015941, dated Apr. 22, 2016. |
ISR and Written Opinion from PCT/US2016/015942, dated Apr. 11, 2016. |
ISR and Written Opinion from PCT/US2016/044039, dated Oct. 6, 2016. |
ISR and Written Opinion from PCT/US2016/045793, dated Oct. 18, 2016. |
ISR and Written Opinion from PCT/US2016/050728, dated Nov. 18, 2016. |
ISR and Written Opinion from PCT/US2016/051261, dated Nov. 18, 2016. |
ISR and Written Opinion from PCT/US2015/013484, dated Apr. 22, 2015. |
Non-Final Office Action dated Mar. 16, 2016 in U.S. Appl. No. 14/591,476. |
Final Office Action dated Jul. 11, 2016 in in U.S. Appl. No. 14/591,476. |
Non-Final Office Action dated Mar. 16, 2016 in U.S. Appl. No. 14/591,541. |
Final Office Action dated Jul. 14, 2016 in U.S. Appl. No. 14/591,541. |
Non-Final Office Action dated Apr. 13, 2016 in U.S. Appl. No. 14/601,761. |
Final Office Action dated Oct. 19, 2016 in U.S. Appl. No. 14/601,761. |
Non-Final Office Action dated Apr. 13, 2016 in U.S. Appl. No. 14/601,793. |
Final Office Action dated Aug. 3, 2016 in U.S. Appl. No. 14/601,793. |
Notice of Allowance dated Oct. 7, 2016 in U.S. Appl. No. 14/601,793. |
Non-Final Office Action dated Dec. 23, 2016 in U.S. Appl. No. 15/221,088. |
AP 42, Fifth Edition, vol. I, Chapter 6: Organic Chemical Process Industry, Section 6.1: Carbon Black. |
Fulcheri, et al. “Plasma processing: a step towards the production of new grades of carbon black.” Carbon 40.2 (2002): 169-176. |
Grivei, et al. A clean process for carbon nanoparticles and hydrogen production from plasma hydrocarbon cracking. Publishable Report, European Commission JOULE III Programme, Project No. JOE3-CT97-0057, circa 2000. |
Fabry, et al. “Carbon black processing by thermal plasma. Analysis of the particle formation mechanism.” Chemical Engineering Science 56.6 (2001): 2123-2132. |
Pristavita, et al. “Carbon nanoparticle production by inductively coupled thermal plasmas: controlling the thermal history of particle nucleation.” Plasma Chemistry and Plasma Processing 31.6 (2011): 851-866. |
Cho, et al. “Conversion of natural gas to hydrogen and carbon black by plasma and application of plasma black.” Symposia—American Chemical Society, Div. Fuel Chem. vol. 49. 2004. |
Pristavita, et al. “Carbon blacks produced by thermal plasma: the influence of the reactor geometry on the product morphology.” Plasma. Chemistry and Plasma. Processing 30.2 (2010): 267-279. |
Pristavita, et al. “Volatile Compounds Present in Carbon Blacks Produced by Thermal Plasmas.” Plasma Chemistry and Plasma. Processing 31.6 (2011): 839-850. |
Garberg, et al. “A transmission electron microscope and electron diffraction study of carbon nanodisks.” Carbon 46.12 (2008): 1535-1543. |
Knaapila, et al. “Directed assembly of carbon nanocones into wires with an epoxy coating in thin films by a combination of electric field alignment and subsequent pyrolysis.” Carbon 49.10 (2011): 3171-3178. |
Krishnan, et al. “Graphitic cones and the nucleation of curved carbon surfaces.” Nature 388.6641 (1997): 451-454. |
Hoyer, et al. “Microelectromechanical strain and pressure sensors based on electric field aligned carbon cone and carbon black particles in a silicone elastomer matrix.” Journal of Applied Physics 112.9 (2012): 094324. |
Naess, Stine Nalum, et al. “Carbon nanocones: wall structure and morphology.” Science and Technology of advanced materials (2016), 7 pages. |
Fulcheri, et al. “From methane to hydrogen, carbon black and water.” International journal of hydrogen energy 20.3 (1995): 197-202. |
ISR and Written Opinion from PCT/US2016/047769, dated Dec. 30, 2016. |
D.L. Sun, F. Wang, R.Y. Hong, C.R. Xie, Preparation of carbon black via arc discharge plasma enhanced by thermal pyrolysis, Diamond & Related Materials (2015), doi: 10.1016/j.diamond.2015.11.004, 47 pages. |
Non-Final Office Action dated Feb. 22, 2017 in U.S. Appl. No. 14/591,541. |
Non-Final Office Action dated May 2, 2017 in U.S. Appl. No. 14/610,299. |
Ex Parte Quayke Action dated May 19, 2017 in U.S. Appl. No. 14/601,761. |
Extended European Search Report from EP Application No. 15 742 910.1 dated Jul. 18, 2017. |
Search report in counterpart European Application No. 15 74 3214 dated Sep. 12, 2017. |
ISR and Written Opinion from PCT/US2017/030139, dated Jul. 19, 2017. |
ISR and Written Opinion from PCT/US2017/030179, dated Jul. 27, 2017. |
A.I. Media et al., “Tinting Strength of Carbon Black,” Journal of Colloid and Interface Science, vol. 40, No. 2, Aug. 1972. |
Reese, J. (2017). Resurgence in American manufacturing will be led by the rubber and tire industry. Rubber World. 255. 18-21 and 23. |
Non-Final Office Action dated Feb. 27, 2017 in U.S. Appl. No. 14/591,476. |
EP17790549.4 Extended European Search Report dated Nov. 26, 2019. |
EP17790570.0 Extended European Search Report dated Nov. 8, 2019. |
U.S. Appl. No. 15/548,346 Office Action dated Oct. 22, 2019. |
U.S. Appl. No. 14/591,528 Office Action dated Oct. 28, 2019. |
U.S. Appl. No. 15/229,608 Office Action dated Oct. 25, 2019. |
Number | Date | Country | |
---|---|---|---|
20180015438 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
62111341 | Feb 2015 | US |