Regenerative vapor energy recovery system and method

Information

  • Patent Grant
  • 11541326
  • Patent Number
    11,541,326
  • Date Filed
    Monday, April 6, 2020
    4 years ago
  • Date Issued
    Tuesday, January 3, 2023
    a year ago
  • Inventors
  • Original Assignees
    • LucasE3, L.C. (Shawnee, KS, US)
  • Examiners
    • Pilcher; Jonathan Luke
    Agents
    • Law Office of Mark Brown, LLC
    • Brown; Mark E.
Abstract
Regenerative vapor energy recovery system and method for use with an ethanol plant. Regenerative vapors are partially condensed in a regenerative precondenser using a warm water stream. The warm water stream is fed to the regenerative precondenser and the partially condensed regenerative vapor stream is sent back to the ethanol plant where the stream is fully condensed using an existing condenser. The ethanol plant is thus operated at greater energy efficiency with lower operating costs than would be achieved with conventional systems.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention provides systems and methods for regenerative vapor energy recovery in or in conjunction with an ethanol plant.


2. Description of the Related Art

In efforts to reduce dependence on fossil fuels, alternative fuels, such as ethanol, have been widely promoted. Ethanol is an attractive alternative because its combustion tends to produce more energy with less greenhouse gas emission than fossil fuels. Also, producing ethanol has a positive net energy balance. Reducing or eliminating dependence on fossil fuel imports tends to produce important geopolitical, environmental and global economic benefits at a national level.


Ethanol can be produced by fermenting and distilling starches, e.g., from grains, cellulosic material and other organic matter. The resulting ethanol (alcohol) can be suitable for combustion as a fuel source or a fuel supplement. Grain processing generally produces distiller's grain (DG), including remaining fats, proteins, fiber, oils and minerals. DG can be useful for feeding livestock and other applications.


Energy efficiency is an objective of ethanol production for purposes of reducing distillers' operating costs and the environmental footprints from their operations. Producing marketable, high-value DG byproducts is another important objective. For minimizing transportation costs, ethanol plants tend to be located near the grain supply sources and the livestock facilities where the DG byproducts are consumed. For example, such plants are relatively common throughout the corn-producing regions of the United States.


The present invention addresses such ethanol distillation plant efficiency objectives by providing a method and system for regenerating vapor energy recovery.


Heretofore there has not been available a system or method for regenerative vapor energy recovery in connection with an ethanol plant, with the advantages and features of the present invention.


SUMMARY OF THE INVENTION

In practicing an aspect of the present invention, a dryer exhaust heat subsystem captures heat from a dryer and further heats a warm water stream in a scrubber, which outputs hot water to the ethanol plant. In the practice of the method of the present invention, captured dryer exhaust heat increases overall ethanol plant efficiencies by reducing the net energy input required for driving plant operations.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings constitute a part of this specification and include exemplary embodiments of the present invention illustrating various objects and features thereof.



FIG. 1 is a schematic representation of a regenerative vapor energy recovery system for an ethanol plant embodying an aspect of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
I. Introduction and Environment

As required, detailed aspects of the present invention are disclosed herein, however, it is to be understood that the disclosed aspects are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art how to variously employ the present invention in virtually any appropriately detailed structure.


Certain terminology will be used in the following description for convenience in reference only and will not be limiting. Said terminology will include the words specifically mentioned, derivatives thereof and words of similar meaning.


II. Preferred Embodiment

A regenerative (or regen) vapor energy recovery system embodying an aspect of the present invention is shown in FIG. 1 and is generally designated by the reference 10. As shown in FIG. 1, regen vapors, 100, from the existing plant, 50, will be sent to the regen precondenser 110 where the regen vapors 100 are partially condensed using a warm water stream, 120, that recirculates through the regen precondenser 110. The warm water stream 120 is fed to the regen precondenser 110 at approximately 185° F. and will produce a heated water stream 130 at approximately 195° F. producing a partially condensed regen vapor stream 140. The partially condensed regen vapor stream 140 is sent back to the existing plant 50, where the stream is fully condensed using an existing condenser.


The heated water stream 130 will be produced at a variable rate and fed to a hot Water Surge Tank 200, to be collected for use. The temperature of this stream may vary between 190° F. and 200° F. On a continuous basis the heated water will be pumped using the heated water pump 220 sending the supply heated water 230 to the heated water flash tank 300 where the heated water stream 230 will be cooled to 185° F. creating a heated water flash vapor 330 that will be diverted to the existing plant 50 to be used as an energy source.


The heated water recirculation pump 320 recirculates warm water 120 back to the regen precondenser 110 as needed to send a recirculated water stream 550 back to the existing plant for reuse and to send excess water 560 from the system 10 back to the ethanol plant 50 for use as dilution water. Rectifier bottoms 420 from the existing plant 50 are fed to the heated water flash tank 300 to maintain adequate level in the tank 300. Water from the tank 300 is fed back to the existing plant 50 for use as dilution water 510.


A recirculating water stream 550 from the bottom of the heated water flash tank 300 is pumped to other areas of the existing plant 50 to capture energy in the form of 190° F. to 200° F. heated water 510 that will be fed back to the heated water flash tank 300, releasing energy in the form of heated water flash vapor 330 to the plant 50 for reuse.


It is to be understood that the invention can be embodied in various forms and is not to be limited to the examples specifically discussed above. The range of components and configurations which can be utilized in the practice of the present invention is virtually unlimited.

Claims
  • 1. A regenerative vapor energy recovery system for an ethanol plant, which includes: a regenerative precondenser configured for receiving regenerative vapors from the ethanol plant;a hot water surge tank receiving a heated water stream from said regenerative precondenser;a hot water flash tank receiving a hot water supply from said surge tank via a heated water pump;wherein said hot water flash tank is in fluid communication with said ethanol plant to provide hot water flash vapor to said ethanol plant;wherein said hot water flash tank is in fluid communication with said ethanol plant to receive rectifier bottoms from said ethanol plant;wherein said hot water flash tank is in fluid communication with said ethanol plant to receive dilution water from said ethanol plant; andthe energy recovery system further comprising a hot water recirculation pump configured to receive warm water cooled in said hot water flash tank and pump a warm water stream to said regenerative precondenser.
  • 2. The system according to claim 1, wherein the system is configured to divert excess water from the warm water stream to the ethanol plant for use in dilution.
  • 3. The system according to claim 1: wherein the system is configured to supply a partially-condensed regenerative vapor stream from said regenerative precondenser to said ethanol plant.
  • 4. The system according to claim 1 wherein said hot water flash tank receives rectifier bottoms from said ethanol plant to maintain an adequate water level in the hot water flash tank.
  • 5. The system according to claim 1 wherein said heated water stream is produced at a variable-rate to the hot water surge tank.
  • 6. The system according to claim 5 wherein said heated water stream is maintained between 190° F. and 200° F.
  • 7. The system according to claim 1 wherein the hot water supply is pumped via the heated water pump to the hot water flash tank where the hot water supply is cooled to 185° F. and creates the hot water flash vapor for diversion to the ethanol plant for use as an energy source.
  • 8. The system according to claim 1 wherein the hot water recirculation pump is configured for sending a recirculated water stream back to the ethanol plant for reuse.
  • 9. The system according to claim 8 wherein said hot water recirculation pump is in fluid communication with said ethanol plant to send excess water from the regenerative vapor energy recovery system back to the ethanol plant for use as dilution water.
  • 10. The system according to claim 8 wherein the hot water flash tank is configured to be in fluid communication with the ethanol plant to supply a water stream to the ethanol plant in the form of 190° F. to 200° F. heated water.
  • 11. The system according to claim 10 wherein the flash tank hot water is fed back to the hot water flash tank for releasing energy in the form of hot water flash vapor.
  • 12. A regenerative vapor energy recovery system for an ethanol plant, which includes: a regenerative precondenser configured for receiving regenerative vapors from the ethanol plant;a hot water surge tank receiving a heated water stream from said regenerative precondenser;a hot water flash tank receiving a hot water supply from said surge tank via a heated water pump;wherein said hot water flash tank is configured to be in fluid communication with said ethanol plant and is configured to provide hot water flash vapor to said ethanol plant;said hot water flash tank is configured to receive rectifier bottoms from said ethanol plant;wherein said hot water flash tank is in fluid communication with said ethanol plant to receive dilution water from said ethanol plant;said energy recovery system comprising a hot water recirculation pump configured to pump a warm water stream to said regenerative precondenser;wherein the system is configured to divert excess water from the warm water stream to the ethanol plant for use in dilution;said hot water recirculation pump connected to and receiving hot water from said hot water flash tank;wherein the system is configured to supply a partially-condensed regenerative vapor stream from said regenerative precondenser to said ethanol plant;said hot water flash tank receiving rectifier bottoms from said ethanol plant to maintain an adequate water level in the heated water flash tank; andsaid heated water stream is produced at a variable-rate to the hot water surge tank.
  • 13. The system according to claim 12 wherein said heated water stream is maintained between 190° F. and 200° F.
  • 14. The system according to claim 13 wherein the hot water supply is pumped via the heated water pump to the hot water flash tank where the hot water supply is cooled to 185° F. and creates the hot water flash vapor for diversion to the ethanol plant 54 for use as an energy source.
  • 15. The system according to claim 12 wherein the hot water recirculation pump is configured for sending a recirculated water stream back to the ethanol plant for reuse.
  • 16. The system according to claim 12 wherein said hot water recirculation pump is in fluid communication with said ethanol plant to send excess water from the regenerative vapor energy recovery system back to the ethanol plant for use as dilution water.
  • 17. The system according to claim 12 wherein the hot water flash tank is in fluid communication with said ethanol plant to supply a water stream to the ethanol plant in the form of 190° F. to 200° F. heated water.
  • 18. The system according to claim 17 wherein water from said ethanol plant is fed back to the hot water flash tank for releasing energy in the form of hot water flash vapor.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority in U.S. Provisional Patent Application No. 62/830,068, filed Apr. 5, 2019, which is incorporated herein by reference.

US Referenced Citations (42)
Number Name Date Kind
2958142 Kershaw et al. Nov 1960 A
3363340 McKinley Jan 1968 A
3673705 Wright et al. Jul 1972 A
4309254 Dahlstrom Jan 1982 A
5178543 Semans et al. Jan 1993 A
5354203 Kotch et al. Oct 1994 A
7504546 Brown et al. Mar 2009 B2
7829680 Sander et al. Nov 2010 B1
7867365 Brown Jan 2011 B2
7988580 McCrary Aug 2011 B2
8173412 Dale May 2012 B2
8778433 Lee Jul 2014 B2
9012191 Lee Apr 2015 B2
9029126 Bleyer et al. May 2015 B2
9066531 Williams Jun 2015 B2
9308489 Brown et al. Apr 2016 B2
9732302 Lee Aug 2017 B2
9777303 Jaket et al. Oct 2017 B2
9931582 Furlong Apr 2018 B2
9989310 Knight, Jr. Jun 2018 B2
10267511 Knight, Jr. Apr 2019 B2
10315127 Mosslein Jun 2019 B2
10345043 Knight, Jr. Jul 2019 B2
10859257 Knight, Jr. Dec 2020 B2
20090171724 Allin et al. Jul 2009 A1
20110315541 Xu Dec 2011 A1
20140053829 Lee Feb 2014 A1
20140106419 Bazzana et al. Apr 2014 A1
20140238881 Stuhlmann et al. Aug 2014 A1
20140343259 Bleyer et al. Nov 2014 A1
20150041305 Overheul et al. Feb 2015 A1
20150045594 Overheul et al. Feb 2015 A1
20160279560 Furlong Sep 2016 A1
20170227287 Knight, Jr. Aug 2017 A1
20180031227 Knight, Jr. Feb 2018 A1
20180172349 Knight, Jr. Jun 2018 A1
20180290073 Brown et al. Oct 2018 A1
20190076751 Lucas Mar 2019 A1
20190203928 Knight, Jr. Jul 2019 A1
20190233354 Lucas Aug 2019 A1
20190336882 Andrade Nov 2019 A1
20200171404 Lucas Jun 2020 A1
Foreign Referenced Citations (1)
Number Date Country
2007303117 Apr 2008 AU
Non-Patent Literature Citations (2)
Entry
Katzen, et al., “Ethanol Distillation: the Fundamentals”, 1999, 270-273.
Raab, Michael , “Enahnced for Ethanol”, Ethanol Producer Magazine, Oct. 2019, ethanolproducer.com/articles/16511/enhanced-for-ethanol, Sep. 16, 2019, 1-2.
Related Publications (1)
Number Date Country
20200316491 A1 Oct 2020 US
Provisional Applications (1)
Number Date Country
62830068 Apr 2019 US