This disclosure relates generally to regenerative heat exchangers, and more particularly to a regenerator wheel apparatus.
Regenerative heat exchangers, or regenerators, also known as heat wheels, are used for energy recovery associated with operations involving heating and cooling. One example of heating and cooling for which such regenerators are employed is that of large spaces such as buildings. Regenerators are used in preheating operations in, for example, steam power plants and in gas adsorption processes and mass transfer operations, such as dehumidification, for example. In order to achieve the results desired, regenerators include what has become known as a matrix. The matrix is the portion of the regenerator that does the absorption and transfer of a specific target species, such as heat, etc. Since operating temperatures of regenerators utilized as noted can exceed 650 degrees Celsius, matrixes are often constructed of ceramic materials. Moreover, ceramics generally have a lower thermal conductivity than metals, which is favorable in regenerative heat exchange applications.
Regenerators have traditionally been configured in several ways to transport the matrix between flow streams of high and low species concentration, such as continuous and discontinuous rotation of the matrix in a regenerator wheel, for example. Often, a significant portion of the mass and/or area of the regenerator wheel comprises the matrix. While some regenerators configured with discontinuous rotation of the regenerator wheel, such as described in U.S. RE37,134, the contents of which are herein incorporated by reference in their entirety, use all of the mass and/or area of the matrix to absorb and transfer the specific target species, others do not. One example of a regenerator that does not use all of the mass and/or area of the matrix is one that is indexed to a finite number of species flow streams, such as four for example. In such devices, a significant area of the matrix may not be used for the purpose for which it is configured.
Because of the cost associated with the production of matrixes, non-utilized sections are not desirable. Furthermore, unused sections of matrix material are undesirable because the matrix itself, especially when made of ceramic material, tends to be on the less robust side with respect to structural durability. Other materials which offer effective heat transfer properties for regenerators do not have the needed structural integrity to be used exclusively as the matrix material.
An embodiment of the invention includes a regenerator wheel. The regenerator wheel includes a framework, a plurality of ports disposed within the framework, with at least one port of the plurality of ports separated from another port by the framework. The regenerator wheel also includes a plurality of matrixes aligned individually with the plurality of ports.
Another embodiment of the invention includes a regenerator wheel having a plurality of distinct matrixes, each matrix comprising at least one flow passage, and means for supporting the plurality of distinct matrixes.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of several embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the figures.
An embodiment of the invention provides a discontinuously rotated or indexed regenerator wheel wherein matrix material is disposed only where useful to transfer the target species, such as at a plurality of ports in a framework. The ports are then alignable with a flow stream of the target species. The ports are appropriately distributed within the regenerator wheel (in one embodiment equally spaced) and their form is based on the shape of the ducts that lead the stream of the target species to and from the matrix. The framework provides enhanced structural integrity and rigidity for the often brittle matrix material. Furthermore, manufacturing costs associated with the matrix representing a significant portion of the mass and/or area of the regenerator wheel can be avoided while maintaining performance of the regenerator. As used herein, the term “regenerator” shall include regenerators used in energy recovery, preheating, exhaust treatment, gas adsorption, and mass transfer applications among others.
Referring now to
The regenerator wheel 50 comprises a framework 55. Framework 55 may be constructed in a number of different ways providing it affords a reliable structure to support and move the matrixes correctly to promote proper operation of the regenerator. Five embodiments are illustrated herein for exemplary purposes but are not to be considered limiting. The first embodiment disclosed is illustrated in
The framework is either of relatively solid construction or constructed of individual components and therefore mostly open. It is to be appreciated that the relatively solid configuration includes foamed material construction (e.g. ceramic foams as marketed by Vesuvius, Belgium). First and second end faces 20 and 22 (best seen with reference to
Each of the plurality of matrixes 60 is sized for a specific application. In some embodiments of the invention, all of the matrixes 60 in a particular wheel 50 will be of the same outer dimension while in other embodiments, differing dimensions are utilized. In general, there will be at least two matrixes 60 of equivalent size in each size category of a wheel 50 since species transfer requires movement of a matrix from one stream to another (usually swapping one matrix for another). Furthermore, sealing with the two streams is more easily facilitated by matrixes that have a same outside dimension. Ports 65 may be located relative to each other on each end face 20 or 22 in any pattern needed to match the locations of the fluid flow feeds (not shown) and the index of the regenerator wheel 50. In a radial flow regenerator, as mentioned above, the port sections may be located on the inner and outer faces of the tube shaped regenerator wheel.
In one embodiment, the at least one passage in each of the plurality of matrixes 60 is disposed perpendicularly to end faces 20 and 22, although it is possible to dispose such passages angularly with respect to the faces 20, 22 if a particular application calls for such an angle. Moreover, while four ports 65 are illustrated, more or fewer are contemplated.
With respect to matrix material, it is to be appreciated that any type of matrix material may be incorporated in the configurations disclosed herein.
Returning now to the structure of framework 55, it should be noted that it is desirable that the framework 55 be of light weight to reduce inertia thereof, thereby reducing the amount of force required to index the regenerator wheel 50 from one index position to another. This results in a savings of material and construction costs with respect to the robustness of the machine tasked with rotating the wheel 50 and additionally promotes speedier indexing movements. Speedier indexing movements result in smaller losses due to leakage or decay of the absorbed species. Simultaneously, the framework 55 provides appropriate rigidity to ensure accurate registration of the plurality of matrixes 60 disposed within the plurality of ports 65 with the fluid flow feeds (not shown) through repeated movements of the regenerator wheel 50.
Because the framework 55 is required to provide structural support to the plurality of matrixes 60 and does not need to absorb or transport the target species, it can be made from a variety of materials and processes which, relative to matrix 61 materials and manufacturing processes represent, among other advantages, reduced costs. Furthermore, because the framework 55 does not need to absorb or transport the target species, it may, as noted above, be solid, or have any appropriate structural arrangement to provide enhanced structural integrity, support, and durability as compared to a regenerator wheel that includes a large area of unused matrix 61 material.
As depicted in
In order to reduce a significance of the substantially uniform thermal expansion coefficient while maintaining functional suitability of the wheel 50, a layer of flexible binder 69 is disposed between each port 65 of the framework 55 and each matrix 60 to compensate for a thermal expansion differential therebetween. It will be appreciated that material of the layer shall withstand the operating temperatures and be flexible in nature. One example of such material, suitable for temperatures up to 800° F., is “Duraseal 1533”, commercially available from Cotronics Corporation of Brooklyn, N.Y.
The filler material 62 of the framework 55 may not be appropriate for contact with a seal (not specifically shown) of the discontinuously rotating regenerator. Therefore, in embodiments where this is an issue, the regenerator wheel 50 further includes at least one seal face 70 made from a material appropriate for contact with the seal of the discontinuously rotating regenerator. Seal face 70 may be disposed to be coplanar with face 20 or may be simply attached thereto, in the event that the regenerator seal mechanism (not shown) is so configured.
Another exemplary process for assembly of the regenerator wheel 50 includes positioning each of the plurality of matrixes 60 into a mold, in the appropriate port 66 location. The process further includes introducing into the mold the framework 55 filler material 62 through a foaming technique for open cell ceramic foam, thereby providing the regenerator wheel 50 having the plurality of matrixes 60 disposed within the plurality of ports 65 of the framework 55 with a single foamed bonding structure. In a further embodiment, the open cell ceramic foam is machined to receive the matrices 60 at the port sections 65 and an appropriate binder fulfilling the substantially uniform thermal expansion coefficient is applied.
Referring now to
Referring now to
Referring now to
In one embodiment, the side plates 81, 82 are made of a ceramic honeycomb including axial passages that allow flow of the target species, and segmentation plates 97 are solid ceramic, to prevent flow of the target species between the separated segments 99. In another embodiment the matrix material used to fill segments 99 is one of the ceramic foam (aforementioned) and a cloth-like heat transfer material. One example of the cloth-like heat transfer material is “Nextel 312”, commercially available from TMO Thermostatic Industries, Inc. of Huntington Park, Calif. The matrix material (disposed within segments 99) can be rigidized and/or bonded to at least one of the segmentation plates 97 and the circumferential plate 96 by commonly used methods.
Segmentation plates 97 prevent flow in a circumferential direction between segments 99 thereby allowing use of at least one of the cloth-like and foamed matrix structure, which do not have strictly axial passages. This latter arrangement will potentially lower the weight of the ceramic matrix significantly for continuously and discontinuously rotated regenerators. In one embodiment, the segmentation plates 97 are a one piece, unitized structure. While a shape of the segments 99 has been depicted as pie shaped, it will be appreciated that the scope of the invention is not so limited to these shapes and the invention will also apply to regenerator apparatuses having other shapes, such as round segments, for example.
In another embodiment, as depicted in
While an embodiment has been described as rotatably disposed about a center, it will be appreciated that the scope of the invention is not so limited, and that the invention will also apply to regenerator apparatuses that transport the matrix from one fluid flow stream to another via alternate motion, such as linear or curve linear translation, for example.
While an embodiment has been depicted having four distinct ports 65, it will be appreciated that the scope of the invention is not so limited, and that the invention will also apply to regenerator wheels 50 having other numbers of distinct ports 65, such as two, three, five, or more, for example. While an embodiment has been described having steps as axial retention features, it will be appreciated that the scope of the invention is not so limited, and that the invention will also apply to regenerator wheels 50 that may have other axial retention features, such as a groove with snap rings, for example to retain the port 66 within the side plates 80 of the carrier 55.
While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims.