The present invention relates to new chemical entities and the incorporation and use of the new chemical entities as fragrance materials.
There is an ongoing need in the fragrance industry to provide new chemicals to give perfumers and other persons ability to create new fragrances for perfumes, colognes and personal care products. Those with skill in the art appreciate how differences in the chemical structure of the molecule can result in significant differences in the odor, notes and characteristics of a molecule. These variations and the ongoing need to discover and use the new chemicals in the development of new fragrances allow perfumers to apply the new compounds in creating new fragrances.
One of the aims of a person skilled in the art of perfumery is to find new chemicals with improved performance from an olfactive point of view, either because their odor qualities are more distinctive and original or because their odor is much stronger or both of these. Such a skilled person knows well enough that they cannot rely on structural closeness to predict whether a new chemical will be a more interesting fragrance ingredient or, even, whether it will be fragrant at all.
The present invention is yet another example of this reality and it brings precisely a new and unexpected contribution into this field.
The present invention is concerned with diastereoisomer mixture of Structure I
In accordance with the invention, a process is disclosed for synthesizing a diastereoisomer mixture of Structure I.
In a further embodiment of the invention Structure II
is provided.
In yet a further embodiment of the invention Structure III
is provided.
Additionally, the invention concerns odorant compositions containing Structure I and the use of Structure I as an odorant.
In yet a further embodiment, the invention concerns odorant compositions containing either Structure II and Structure III and the use of Structure II and Structure III as individual odorants.
It has been surprisingly discovered that the isomers and diastereoisomer mixture of the present invention possess superior organoleptic properties. In addition, the isomers and diastereoisomer mixture are distinctly advantageous in perfumery applications when compared to their racemic mixture counterparts known from the prior art.
In our improved process we have surprisingly found a regiospecific ring forming procedure which produces a diastereoisomer mixture and substantially pure individual isomeric components.
In the course of the present investigations it has been found that Structure I
when compared to the commercially available GRISALVA™ possesses valuable odorant properties.
Structure I comprises the two isomers of Structure II and Structure III
Structure I possesses more powerful, cleaner smelling, more ambery, woodier, ambergris fragrance notes. The buttery character in Structure I is also nicer, creamier and very appealing. There is a clear difference in the overall quality of Structure I, also apparent in the dry down. Even after eight hours on the blotter, Structure I appears to be stronger, woodier and more substantive.
According to one embodiment of the invention, it has been found that the compounds possess valuable odorant properties and can accordingly be used as odorants.
The olfactory notes of Structure I can be characterized as possessing nice woody, ambery, flowery, creamy, powerful, buttery, sweet notes. Structure II possesses woody, labdanum and ambergris notes and Structure III possesses woody, ambery ionone and strong fragrance notes.
On the basis of their olfactory notes, the diastereoisomer mixture of Structure I and the individual isomers, Structure II and III, are especially suitable for modifying and intensifying known compositions. In particular, their extraordinary olfactory strength, which contributes quite generally to the refinement of the compositions, should be emphasized.
One skilled in the art would recognize that manufactured fragrance compositions contain many different compounds at varying levels. For example, GRISALVA™ as commercially sold by International Flavors & Fragrances Inc. may contain at least fourteen different compounds. In Example VI, the Gas Chromatograph data of GRISALVA™ and the improved quality of the present invention is provided. The cis/trans ratio of Structure II and Structure III in GRISALVA™ is 14/5 as compared to the cis/trans ratio of Structure II and Structure III of about 41/34 obtained by the improved process. Accordingly, the diastereoisomer mixture may have a having a cis/trans isomer ratio of at least about 30/50 to about 50/30. The cis/trans ratio may also be in the range of about 35/45 to about 45/35. As understood by one skilled in the art the cis/trans isomer ratio can be increased by distillation and removing the front and back isomeric impurities.
A fragrance composition is also provided containing a fragrance-enhancing amount of the Structure I wherein the diastereoisomer mixture may have a having a cis/trans isomer ratio of at least about 30/50 to about 50/30. The cis/trans ration may also be in the range of about 35/45 to about 45/35.
According to the present invention, the purity of Structure II and Structure III is considerably higher. Structure II has a purity level of at least about 70%, more preferably of at least about 80%, more preferably of about 90%, more preferably of about 95%, more preferably of about 97.5% and more preferably of about 99%. Structure III has a purity level of at least about 70%, more preferably of at least about 80%, more preferably of about 90%, more preferably of about 95%, more preferably of about 97.5% and more preferably of about 99%.
In accordance with the invention substantially pure is defined as a purity level of about 70% and greater.
A fragrance composition is also provided containing a fragrance-enhancing amount of either Structure II or Structure III wherein each structure has a purity level of at least about 70%, more preferably of at least about 80%, more preferably of about 90%, more preferably of about 95%, more preferably of about 97.5% and more preferably of about 99%.
Furthermore a fragrance composition containing both Structure II and Structure III wherein each structure has a purity level of at least about 70%, more preferably of at least about 80%, more preferably of about 90%, more preferably of about 95%, more preferably of about 97.5% and more preferably of about 99%.
Methods for improving, enhancing or modifying a fragrance formulation is also provided.
The use of the compounds of the present invention is widely applicable in current perfumery products, including the preparation of perfumes and colognes, the perfuming of personal care products such as soaps, shower gels, and hair care products as well as air fresheners and cosmetic preparations. The present invention can also be used to perfume cleaning agents, such as, but not limited to detergents, dishwashing materials, scrubbing compositions, window cleaners and the like.
In these preparations, the compounds of the present invention can be used alone or in combination with other perfuming compositions, solvents, adjuvants and the like. The nature and variety of the other ingredients that can also be employed are known to those with skill in the art.
Many types of fragrances can be employed in the present invention, the only limitation being the compatibility with the other components being employed. Suitable fragrances include but are not limited to fruits such as almond, apple, cherry, grape, pear, pineapple, orange, strawberry, raspberry; musk, flower scents such as lavender-like, rose-like, iris-like, carnation-like. Other pleasant scents include herbal and woodland scents derived from pine, spruce and other forest smells. Fragrances may also be derived from various oils, such as essential oils, or from plant materials such as peppermint, spearmint and the like.
A list of suitable fragrances is provided in U.S. Pat. No. 4,534,891, the contents of which are incorporated by reference as if set forth in its entirety. Another source of suitable fragrances is found in Perfumes, Cosmetics and Soaps, Second Edition, edited by W. A. Poucher, 1959. Among the fragrances provided in this treatise are acacia, cassie, chypre, cyclamen, fern, gardenia, hawthorn, heliotrope, honeysuckle, hyacinth, jasmine, lilac, lily, magnolia, mimosa, narcissus, freshly-cut hay, orange blossom, orchid, reseda, sweet pea, trefle, tuberose, vanilla, violet, wallflower, and the like.
Olfactory effective amount is understood to mean the amount of compound in perfume compositions the individual component will contribute to its particular olfactory characteristics, but the olfactory effect of the perfume composition will be the sum of the effects of each of the perfumes or fragrance ingredients. Thus the compounds of the invention can be used to alter the aroma characteristics of the perfume composition, or by modifying the olfactory reaction contributed by another ingredient in the composition. The amount will vary depending on many factors including other ingredients, their relative amounts and the effect that is desired.
The level of compound of the invention employed in the perfumed article varies from about 0.005 to about 10 weight percent, preferably from about 0.5 to about 8 and most preferably from about 1 to about 7 weight percent. In addition to the compounds other agents can be used in conjunction with the fragrance. Well known materials such as surfactants, emulsifiers, polymers to encapsulate the fragrance can also be employed without departing from the scope of the present invention.
Another method of reporting the level of the compounds of the invention in the perfumed composition, i.e., the compounds as a weight percentage of the materials added to impart the desired fragrance. The compounds of the invention can range widely from 0.005 to about 70 weight percent of the perfumed composition, preferably from about 0.1 to about 50 and most preferably from about 0.2 to about 25 weight percent. Those with skill in the art will be able to employ the desired level of the compounds of the invention to provide the desired fragrance and intensity.
Structure II and III are accessible according to the following Scheme:
The individual steps involved in the process are based on chemistry known to one skilled in the art.
According to one of the embodiment of the invention, the preparation of an diastereoisomeric mixture of the structure, known by one skilled the art known by one skilled in the art as 3a-Ethyl-6,6,9a-trimethyl-dodecahydro-napthol[2,1-b]furan:
is prepared according to the following steps:
to Darzen's condensation to provide a compound of Structure V, 3-Ethyl-3-[2-(2,6,6-trimethyl-cyclohex-2-enyl)-ethyl]-oxirane-2-carboxylic acid methyl ester
According to another embodiment of the invention, the individual isomeric components are obtained following the process detailed below:
to Darzen's condensation to provide a compound of Structure V, 3-Ethyl-3-[2-(2,6,6-trimethyl-cyclohex-2-enyl)-ethyl]-oxirane-2-carboxylic acid methyl ester
It is a matter of course that modifications concerning the reagents and reaction conditions are possible.
The following are provided as specific embodiments of the present invention. Other modifications of this invention will be readily apparent to those skilled in the art. Such modifications are understood to be within the scope of this invention. As used herein all percentages are weight percent unless otherwise noted, ppm is understood to stand for parts per million and g is understood to be grams. All U.S. patents mentioned above are incorporated herein by reference. IFF as used in the examples is understood to mean International Flavors & Fragrances Inc., New York, N.Y., USA. All fragrance materials mentioned in the examples are available from IFF.
To a 5 L flask under nitrogen was added toluene (1 L) and potassium tert-butoxide (336 g), and the stirred mixture was cooled to −10° C., Dihydromethyl ionone (582 g) was charged over 10 minutes while maintaining a temperature between −10° C. and 0° C. Methyl chloroacetate (313 g) was charged over 4 hours such that the internal temperature did not exceed 0° C.
The reaction stirred for an additional 1.5 hours while warming to room temperature (GC indicated an 80% conversion) and the reaction was quenched by the addition of 2 L 3% acetic acid solution. The layers were separated, and the organic layer was washed with water until neutral prior to purification via rushover distillation.
The crude ester was purified by distillation using a rushover apparatus consisting of a 3 L distillation flask equipped with a 2 inch splash column containing stainless steel mesh, a rushover column, and a fraction cutter. The material was distilled with 25 g of primol.
The ester (1014 g) and methanol (2 L) was charged under nitrogen to a 5 L flask, and the reaction was cooled to 0-5° C. Sodium hydroxide was fed over 15 minutes (exothermic) such that the reaction temperature did not exceed 20° C. The reaction was stirred at room temperature for 2 hours and was poured into water (2 L) and toluene (800 mL)—the mixture was stirred and the organic layer was discarded. The aqueous layer was extracted with toluene (800 mL)—discard organic layer. The aqueous layer was returned to the reaction flask and was cooled to 5° C. Phosphoric acid was fed into the stirred solution (exothermic) over 15 minutes such that the reaction temperature did not exceed 20° C. The crude reaction mixture was poured into a separatory funnel and the layers were separated.
Primol was added to the 3 L flask and the system was placed under vacuum (5-9 mm Hg).
After heating the primol to 210° C., the crude acid mixture was fed into the primol over 6.5 hours—product distills during feed. After the feed was complete, the vacuum was increased to 1.5 mm Hg and held for 15 minutes. The distilled mixture was washed with saturated sodium bicarbonate, then brine and was purified by rushover distillation.
The crude aldehyde was purified by distillation using a rushover apparatus consisting of a 2 L distillation flask equipped with a 2″ splash column containing stainless steel mesh, a rushover column, and a fraction cutter.
The aldehyde was charged, under nitrogen, to the 3 L reaction flask followed by cyanoacetic acid, DMF, 2-ethylhexylamine, and acetic acid. With stirring, the mixture was placed under vacuum (120 mm) and was heated to 80-85° C. Note: Cyanoacetic acid begins to decompose near 90° C. During the reaction, water and some DMF distilled from reaction. When the distillation ended (35 minutes), the vacuum was increased to 70 mm, and the reaction stirred for an additional 30 minutes (additional water distilled from the reaction)—check for remaining starting material (GC). Note: Do not raise temperature above 85° C., as cyanoacetic acid will begin to decompose near 90° C. Additional cyanoacetic acid, 2-ethylhexylamine, and acetic acid (0.1 eq each) may be added. The reaction was removed from vacuum, the rushover apparatus was removed, a 12 inch reflux column connected to a gas bubbler was attached, and acetic anhydride was added. The reaction was heated to 130° C., and a vigorous evolution of CO2 was observed. After CO2 evolution stopped (2 h), the temperature was raised to 140° C. and the reaction stirred for an additional 30 minutes or until additional CO2 evolution stopped. The reaction was cooled to 50° C., poured into 500 mL water, was stirred and the layers were separated (pH aq=5-6).
The aqueous layer was extracted with saturated sodium bicarbonate (200 mL), and the crude product was purified by fractional distillation.
The crude nitrile was purified by fractional distillation using a 24 inch goodloe-packed column. The material was distilled with 101 g of primol.
The nitrile was charged under nitrogen to a 2 liter flask followed by toluene and phosphoric acid. The reaction was heated to reflux and stirred for 2 hours, after which time, 450 mL toluene was removed via bidwell. The reaction was cooled to 50° C., poured into water (1 L) and toluene (250 mL), and was stirred and the layers were separated. The aqueous layer was extracted with toluene (250 mL) and the combined organics were washed with saturated sodium bicarbonate, then brine. Solvent was removed via Rot-o-vap (80° C., 40 mm), and the crude bicyclic nitrile was used in the next step without further purification.
The bicyclic nitrile was charged under nitrogen to a 3 L flask followed by ethylene glycol and potassium hydroxide, and was heated to reflux for 4.5 hours.
Reflux began at 150° C., however as water vapor is released through the condenser, the reaction temperature increased to approx. 170° C. The reaction was cooled, poured into water (1.5 L) and toluene (750 mL), was stirred, the layers were separated and the organic layer was discarded. The aqueous layer was extracted with toluene (250 mL×2)—discard organics. The aqueous layer was acidified with hydrochloric acid (conc.) to a pH of 1, and was extracted with toluene (750 mL, then 250 mL). The combined organics were dried via azeotropic distillation using a 3 L 3-neck flask fitted equipped with a mechanical stirrer, heating mantle, thermocouple, a 12″ reflux condenser, and a bidwell. The crude solution of product in toluene was used without further purification in the next step.
The toluene solution of the bicyclic acid was charged under nitrogen to a 3 L flask, Amberlyst-15 was added, the reaction was heated to reflux for 10 hours. The reaction was cooled and filtered, and the Amberlyst resin was washed with toluene (250 ml). Solvent was removed via Rot-o-vap (80° C., 40 mm), and the crude GRISALVA lactone was purified by rushover distillation.
The crude lactone was purified by distillation using a rushover apparatus consisting of a 500 mL distillation flask equipped with a 2 inch splash column containing stainless steel mesh, a rushover column, and a fraction cutter, no cooling water was added to the condensor.
Toluene (1794 g) and lactone were charged under nitrogen to a 5 L flask, and the resulting solution was heated to 80° C. Vitride was fed over 1 hour (exothermic) while maintaining 80° C., and the reaction stirred for an additional 2 hours. The reaction temperature was cooled to 75° C., and ethyl acetate was added (mild exotherm). The reaction stirred at 75° C. for 30 minutes, and a preheated 75° C. solution of 2.5% sodium hydroxide (1 L) was added. The reaction was stirred for 1 hour and the layers were separated. The organic layer was washed with hot water (500 mL×3) until the pH of the water wash was 7.5. The crude product in toluene was dried via azeotropic distillation using a 5 L 3-neck flask equipped with a mechanical stirrer, heating mantle, thermocouple, a 12 inch reflux condenser, and a bidwell. The crude reaction product was subjected to ring closure and the resulting mixture was confirmed by GC.
The diastereomeric mixture possesses nice woody, amber and flowery notes.
Approximately 100 mL solvent removed during this procedure. The material cooled to room temperature and stood for 12 hours (overnight). The crystals that had formed were collected via vacuum filtration to give 110 g (after drying) rigid, colorless needles that were sparingly soluble in toluene. The crystals were subjected to ring closure and the resulting ether had the same GC retention time as cis isomer of GRISALVA. The stereochemistry of the diol collected and the ether formed were therefore assigned as:
The cis isomer of Structure II possesses woody, labdanum and ambergris notes.
The cis isomer of Structure II was found to have a purity of 95.4%. The analytical data was obtained using a 6890N Gas Chromatograph commercially available from Agilent Technologies.
HMNR 0.82 ppm(s, 3H);0.88 ppm(t, 3H);0.89 ppm(s, 3H);1.10 ppm(s, 3H);1.23 ppm(m, 1H);1.25 ppm(m, 1H);1.32 ppm(m, 1H);1.32 ppm(m, 1H);1.40 ppm(m, 1H);1.42 ppm(m, 1H);1.43 ppm(m, 1H);1.43 ppm(m, 1H);1.53 ppm(m, 1H);1.60 ppm(m, 1H);1.65 ppm(m, 1H);1.67 ppm(m, 1H);1.67 ppm(m, 1H);1.72 ppm(m, 1H);1.83 ppm(m, 1H);2.03 ppm(m, 1H);3.62 ppm(m, 1H);3.80 ppm(m, 1H)
The mother liquor was heated to reflux and 1.2 L toluene was removed. The resulting solution cooled to room temperature, was seeded with the crystals collected in the earlier filtration, and stood for 12 hours (overnight). The crystals that formed were collected via vacuum filtration to give 60 g (after drying) of fine white crystals that were readily soluble in toluene.
The crystals were subjected to ring closure and the resulting ether had the same GC retention time as trans isomer of GRISALVA. The stereochemistry of the diol collected and the ether formed were therefore tentatively assigned as:
The trans isomer of Structure III possesses a woody, ambery ionone and strong fragrance notes.
The trans isomer of Structure III was found to have a purity of 87.3%. The analytical data was obtained using a 6890N Gas Chromatograph commercially available from Agilent Technologies.
HMNR 0.80 ppm(s, 3H);0.89 ppm(t, 3H, J=6.5 Hz);1.02 ppm(bd, 1H, J=13.5 Hz);1.07 ppm(s, 3H);1.11 ppm(s, 3H);1.14 ppm(d, 1H, J=13.5 Hz, of t, J=4.4 Hz);1.21 ppm(d, 1H, J=12 Hz, of d, J=4 Hz);1.33 ppm(d, 1H, J=13 Hz, of t, J=4.5 Hz);1.37 ppm(d, 1H, J=13 Hz, of q, J=4 Hz);1.42 ppm(m, 1H);1.49 ppm(m, 1H);1.57 ppm(d, 1H, J=14 Hz, of t, J=4 Hz);1.61 ppm(d, 1H, J=14 Hz, of q, J=6.5 Hz);1.63 ppm(m, 1H);1.66 ppm(bt, 1H, J=9 Hz);1.67 ppm(m, 1H);1.71 ppm(d, 1H, J=14 Hz, of q, J=6.5 Hz);1.74 ppm(d, 1H, J=14 Hz, of t, J=4 Hz);1.97 ppm(m, 1H);2.07 ppm(m, 1H);3.67 ppm(m, 1H);3.82 ppm(m, 1H);
This is a musky, citrus floral accord designed for alcoholic fragrances.
This is a floral, balsamic, ambery accord designed for alcoholic fragrances.
This is a citrus fragrance.
The following is a comparative example between the GRISALVA™ composition commercially available from IFF Inc. and Structure I. The odor evaluations were performed by a trained GC perfumer and a panelist of perfumers.
The fragrance notes are as follows:
The odor quality of Structure I is more powerful, cleaner smelling, more ambery, woodier, ambergris that the commercially available GRISALVA™. The buttery character in the new material is nicer, creamier, very appealing. There is a clear difference in the overall quality, also apparent in the dry down. After eight hours on blotter, Structure I appears to be stronger, woodier, more substantive.
In Table I the fragrance descriptions of strength, substantivity and quality are assessed on a scale from 1-10, with 1 being the low end of the scale and 10 being the high end of the scale. Dry down are determined after 6 hours.
The following example provides analytical data which demonstrates a significant difference in the composition between the two products. The analytical data was obtained using a 6890N Gas Chromatograph shows. Peak 4 and Peak 5 correlate to Structure III and Structure II.
Remaining difference completed by minor peaks totaling 100%.
Remaining difference completed by minor peaks totaling 100.0%.
Compared to the commercial mixture the improved quality contains much higher levels of both Peak 4 and Peak 5. The cis/trans ratio of the diastereoisomer is about 41/33 in the improved quality as compared to about 14/5 in the commercial grade.
To further demonstrate the organoleptic properties of each variant, two formulas were prepared dosing each one equally. Dilutions were then prepared at a level of 10.0% in ethanol and evaluated. The following fragrance contains the commercially available GRISALVA™:
The fragrance formula is described as possessing lavendaceous, minty, sweet, citrusy, vanillic, herbaceous and woody notes.
To further demonstrate the organoleptic properties of each variant, two formulas were prepared dosing each one equally. Dilutions were then prepared at a level of 10.0% in ethanol and evaluated. The following fragrance contains Structure I:
The fragrance containing structure I is a much fresher finished product, accentuating the sweet minty, woody and ambery top notes, also more lavendaceous and herbaceous. Formula containing Structure I is also perceived as being stronger, cleaner and crispier. The addition of Structure I allows for fragrance enhancement, increasing the overall woodiness and citrus notes giving the impression of more dimensions and a fuller body.
This application is a continuation in part of U.S. Ser. No. 11/942,020, filed on Nov. 19, 2007, the contents hereby incorporated by reference as if set forth in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11942020 | Nov 2007 | US |
Child | 12270545 | US |