This application is related to U.S. application Ser. Nos. 09/747,019, filed on Dec. 21, 2000, 09/760,509, filed on Jan. 12, 2001, 09/811,995, filed on Mar. 19, 2001, 10/070,006 filed on Feb. 28, 2002, 10/070,091, filed on Jun. 28, 2002, 10/070,092, filed on Jun. 28, 2002, 10/069,306, filed on Jul. 3, 2002, 10/070,008, filed on Jul. 3, 2002, 10/070,011, filed on Jul. 3, 2002, 10/070,035, filed on Jul. 3, 2002, 10/212,945, filed Aug. 5, 2002, 10/069,352, filed on Aug. 7, 2002, 10/069,195, filed on Nov. 7, 2002, 10/069,805, filed on Nov. 7, 2002, and 10/069,229, filed on Dec. 11, 2002.
Parallel processing is an efficient form of information processing of concurrent events in a computing process. Parallel processing demands concurrent execution of many programs, in contrast to sequential processing. In the context of parallel processing, parallelism involves doing more than one thing at the same time. Unlike a serial paradigm where all tasks are performed sequentially at a single station or a pipelined machine where tasks are performed at specialized stations, with parallel processing, many stations are provided, each capable of performing and carrying out various tasks and functions simultaneously. A number of stations work simultaneously and independently on the same or common elements of a computing task. Accordingly, parallel processing solves various types of computing tasks and certain problems are suitable for solution by applying several instruction processing units and several data streams.
Architecture:
Referring to
The programming engines 16 each maintain program counters in hardware and states associated with the program counters. Effectively, corresponding sets of context or threads can be simultaneously active on each of the programming engines 16 while only one is actually operating at any one time.
In this example, eight programming engines 16a-16h are illustrated in
The eight programming engines 16a-16h access either the DRAM memory 14a or SRAM memory 14b based on characteristics of the data. Thus, low latency, low bandwidth data are stored in and fetched from SRAM memory 14b, whereas higher bandwidth data for which latency is not as important, are stored in and fetched from DRAM memory 14a. The programming engines 16 can execute memory reference instructions to either the DRAM controller 18a or SRAM controller 18b.
The hardware-based multithreaded processor 12 also includes a processor core 20 for loading microcode control for the programming engines 16. In this example, although other types of processor cores may be used in embodiments of this invention, the processor core 20 is an XScale™ based architecture, designed by Intel® Corporation, of Santa Clara, Calif.
The processor core 20 performs general-purpose computer type functions such as handling protocols, exceptions, and extra support for packet processing where the programming engines 16 pass the packets off for more detailed processing such as in boundary conditions.
The processor core 20 executes an operating system (not shown). Through the operating system (OS), the processor core 20 can call functions to operate on the programming engines 16a-16h. For the core processor 20 implemented as an XScale™ architecture, operating systems such as Microsoft® NT real-time of Microsoft® Corporation, of Seattle, Wash., VxWorks® real-time operating system of WindRiver®, of Alameda, Calif., or a freeware OS available over the Internet can be used.
Advantages of hardware multithreading can be explained by SRAM or DRAM memory accesses. As an example, an SRAM access requested by a context (e.g., Thread_0), from one of the programming engines 16, e.g., programming engine 16a, will cause the SRAM controller 18b to initiate an access to the SRAM memory 14b. The SRAM controller 18b accesses the SRAM memory 14b, fetches the data from the SRAM memory 14b, and returns data to a requesting programming engine 16.
During an SRAM access, if one of the programming engines 16a-16h has a single thread that could operate, that programming engine would be dormant until data was returned from the SRAM memory 14b.
By employing hardware context swapping within each of the programming engines 16a-16h, the hardware context swapping enables other contexts with unique program counters to execute in that same programming engine. Thus, another thread e.g., Thread_1 can function while the first thread, Thread_0 , is awaiting the read data to return. During execution, Thread_1 may access the DRAM memory 14a. While Thread_1 operates on the DRAM unit, and Thread—0 is operating on the SRAM unit, a new thread, e.g., Thread_2 can now operate in the programming engine 16. Thread_2 can operate for a certain amount of time until it needs to access memory or perform some other long latency operation, such as making an access to a bus interface. Therefore, simultaneously, the multi-threaded processor 12 can have a bus operation, an SRAM operation, and a DRAM operation all being completed or operated upon by one of the programming engines 16 and have one more threads or contexts available to process more work.
The hardware context swapping also synchronizes the completion of tasks. For example, two threads can access the shared memory resource, e.g., the SRAM memory 14b. Each one of the separate functional units, e.g., the SRAM controller 18b, and the DRAM controller 18a, when they complete a requested task from one of the programming engine threads or contexts reports back a flag signaling completion of an operation. When the programming engines 16a-16h receive the flag, the programming engines 16a-16h can determine which thread to turn on.
One example of an application for the hardware-based multithreaded processor 12 is as a network processor. As a network processor, the hardware-based multithreaded processor 12 interfaces to network devices such as a Media Access Controller (MAC) device, e.g., a 10/100 BaseT Octal MAC or a Gigabit Ethernet device compliant with IEEE 802.3. In general, as a network processor, the hardware-based multithreaded processor 12 can interface to any type of communication device or interface that receives or sends large amount of data. The computer processing system 10 functioning in a networking application can receive network packets and process those packets in a parallel manner.
Registers in Programming Engines:
Referring to
In addition to event signals that are local to an executing thread, the programming engine 16a employs signaling states that are global. With signaling states, an executing thread can broadcast a signal state to all programming engines 16a-16h. Any and all threads in the programming engines can branch on these signaling states.
As described above, the programming engine 16a supports multi-threaded execution of eight contexts. This allows one thread to start executing just after another thread issues a memory reference and must wait until that reference completes before doing more work. Multi-threaded execution is critical to maintaining efficient hardware execution of the programming engine 16a because memory latency is significant. Multi-threaded execution allows the programming engines 16 to hide memory latency by performing useful independent work across several threads.
The programming engine 16a, to allow for efficient context swapping, has its own register set, program counter, and context specific local registers. Having a copy per context eliminates the need to move context specific information to and from shared memory and programming engine registers for each context swap. Fast context swapping allows a context to perform computations while other contexts wait for input-output (I/O), typically, external memory accesses to complete or for a signal from another context or hardware unit.
General Purpose Registers
The programming engine 16a executes the eight contexts by maintaining eight program counters and eight context relative sets of registers. A number of different types of context relative registers, such as general purpose registers (GPRs) 32, inter-programming agent registers (not shown), Static Random Access Memory (SRAM) input transfer registers 34, Dynamic Random Access Memory (DRAM) input transfer registers 36, SRAM output transfer registers 38, DRAM output transfer registers 40.
The GPRs 32 are used for general programming purposes. The GPRs 32 are read and written exclusively under program control. The GPRs 32, when used as a source in an instruction, supply operands to an execution datapath 44.
The execution datapath 44 can take one or two operands, perform an operation, and optionally write back a result. The execution datapath 44 includes a content addressable memory (CAM) 45. Each entry of the CAM 45 stores a 32-bit value, which can be compared against a source operand. All entries are compared in parallel and the result of the lookup is a 6-bit value.
When used as a destination in an instruction, the GPRs 32 are written with the result of the execution datapath 44. The programming engine 16a also includes I/O transfer registers 34, 36, 38 and 40 which are used for transferring data to and from the programming engine 16a and locations external to the programming engines 16a, e.g., the DRAM memory 14a, the SRAM memory 14b, and the like.
Transfer Registers
The programming engine 16a also includes transfer registers 34, 36, 38 and 40. Transfer registers 34, 36, 38 and 40 are used for transferring data to and from the programming engine 16a and locations external to the programming engine, e.g., DRAMs, SRAMs etc. There are four types of transfer registers as illustrated in
The input transfer registers, when used as a source in an instruction, supply operands to the execution datapath 44, whereas output transfer registers are written with the result from the execution datapath 44 when utilized as a destination in an instruction.
Local Control and Status Registers (CSRs)
Local control and status registers (CSRs) 37 are external to the execution datapath 44 and hold specific purpose information. They can be read and written by special instructions (local_csr_rd and local_csr_wr) and are typically accessed less frequently than datapath registers.
Next Neighbor Registers
The programming engine 16a also includes one hundred and twenty eight (128) Next Neighbor (NN) registers, collectively referred to as NN registers 35. Each NN Register 35, when used as a source in an instruction, also supplies operands to the execution datapath 44. Each NN register 35 is written either by an external entity, not limited to, an adjacent programming engine, or by the same programming engine 16a where each NN register 35 resides. The specific register is selected by a context-relative operation where the register number is encoded in the instruction, or as a ring operation, selected via, e.g., NN_Put (NN write address) and NN_Get (NN read address) in the CSR Registers.
NN_Put registers are used when the previous neighboring programming engine executes an instruction with NN_Put as a destination. The NN register selected by the value in this register is written, and the value in NN_Put is then incremented (a value of 127 wraps back to 0). The value in this register is compared to the value in NN_Get register to determine when to assert NN_Full and NN_Empty status signals.
NN_Get registers are used when the NN register 35 is accessed as a source, which is specified in the source field of the instruction. The NN register selected by the value in this register is read, and the value in NN_Put is then decremented (a value of 127 wraps back to 0). The value in this register is compared to the value in the NN_Put register to determine when to assert NN_Full and NN_Empty status signals.
Specifically, when each NN register 35 is used as an origin in an instruction, the instruction result data are sent out of the programming engine 16a, typically to another, adjacent programming engine. On the other hand, when the NN register 35 is used as a destination in an instruction, the instruction result data are written to the selected NN Register 35 in the programming engine 16a. The data are not sent out of the programming engine 16a as it would be when each NN register 35 is used as a destination. Each NN register 35 is used in a context pipelining method, as described below.
A local memory 42 is also used. The local memory 42 includes addressable storage located in the programming engine 16a. The local memory 42 is read and written exclusively under program control. The local memory 42 also includes variables shared by all the programming engines 16. Shared variables are modified in various assigned tasks during functional pipeline stages by the programming engines 16a-16h, which are described next. The shared variables include a critical section, defining the read-modify-write times. The implementation and use of the critical section in the computing processing system 10 is also described below.
Functional Pipelining and Pipeline Stages
Referring to
In the functional pipeline unit 50, the contexts 58 of the programming engines 16a, namely, Programming Engine0.1 (PE0.1) through Programming Engine0.n (PE0.n), remain with the programming engine 16a while different functions are performed on the data packets 54 as time 66 progresses from time=0 to time=t. A programming execution time is divided into “m” functional pipeline stages or pipe-stages 60a-60m. Each pipeline stage of the pipeline stages 60a-60m performs different pipeline functions 62a, 64, or 62p on data in the pipeline.
The pipeline stage 60a is, for example, a regular time interval within which a particular processing function, e.g., the function 62a is applied to one of the data packets 54. A processing function 62 can last one or more pipelines stages 60. The function 64, for example, lasts two pipeline stages, namely pipeline stages 60b and 60c.
A single programming engine such as the programming engine 16a can constitute a functional pipeline unit 50. In the functional pipeline unit 50, the functions 62a, 64, and 62p move through the functional pipeline unit 50 from one programming engine (e.g., programming engine 16a), to another programming engine (e.g., programming engine 16b), as will be described next.
Referring to
Dividing the execution time of the programming engine 16a, for example, into functional pipeline stages 60a-60c results in more than one of the programming engines 16 executing an equivalent functional pipeline unit 70 in parallel. The functional pipeline stage 60a is distributed across two programming engines 16a and 16b, with each of the programming engines 16a and 16b executing eight contexts each.
In operation, each of the data packets 54 remains with one of the contexts 58 for a longer period of time as more programming engines 16 are added to the functional pipeline units 50 and 70. In this example, the data packet 54 remains with a context sixteen data packet arrival times (8 contexts×2 programming engines) because context PE0.1 is not required to accept another data packet 58 until the other contexts 58 have received their data packets.
In this example, function 62a of the functional pipeline stage 60a can be passed from the programming engine 16a to the programming engine 16b. Passing of the function 62a is accomplished by using Next Neighbor registers, as illustrated by dotted lines 80a-80c in
The number of functional pipeline stages 60a-60m is equal to the number of the programming engines 16a and 16b in the functional pipeline units 50 and 70. This ensures that a particular pipeline stage executes in only one programming engine 16 at any one time.
Context Pipelining:
Each of the programming engine 16 supports multi-threaded execution of eight contexts. One reason for this is to allow one thread to start executing just after another thread issues a memory reference and must wait until that reference completes before doing more work. This behavior is critical to maintaining efficient hardware execution of the programming engines 16a-16f because memory latency is significant. Stated differently, if only a single thread execution was supported, the programming engine would sit idle for a significant number of cycles waiting for references to complete and thereby reduce overall computational throughput. Multi-threaded execution allows a programming engine to hide memory latency by performing useful independent work across several threads.
The programming engines 16a-16h (
Referring now to
For example, data can be passed forward from one programming engine 16 to the next programming engine 16 in the pipeline using the NN registers 35a-35c, as illustrated by example in
Referring to
Referring to
Other Embodiments:
In the examples described above in conjunction with
It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3373408 | Ling | Mar 1968 | A |
3478322 | Evans | Nov 1969 | A |
3577189 | Cocke et al. | May 1971 | A |
3792441 | Wymore et al. | Feb 1974 | A |
3881173 | Larsen et al. | Apr 1975 | A |
3913074 | Homberg et al. | Oct 1975 | A |
3940745 | Sajeva | Feb 1976 | A |
4023023 | Bourrez et al. | May 1977 | A |
4130890 | Adam | Dec 1978 | A |
4392758 | Bowles et al. | Jul 1983 | A |
4400770 | Chan et al. | Aug 1983 | A |
4454595 | Cage | Jun 1984 | A |
4471426 | McDonough | Sep 1984 | A |
4477872 | Losq et al. | Oct 1984 | A |
4514807 | Nogi | Apr 1985 | A |
4523272 | Fukunaga et al. | Jun 1985 | A |
4569016 | Hao et al. | Feb 1986 | A |
4606025 | Peters et al. | Aug 1986 | A |
4724521 | Carron et al. | Feb 1988 | A |
4742451 | Bruckert et al. | May 1988 | A |
4745544 | Renner et al. | May 1988 | A |
4755966 | Lee et al. | Jul 1988 | A |
4777587 | Case et al. | Oct 1988 | A |
4808988 | Burke et al. | Feb 1989 | A |
4816913 | Harney et al. | Mar 1989 | A |
4847755 | Morrison et al. | Jul 1989 | A |
4866664 | Burkhardt, Jr. et al. | Sep 1989 | A |
4868735 | Moller et al. | Sep 1989 | A |
4992934 | Portanova et al. | Feb 1991 | A |
5045995 | Levinthal et al. | Sep 1991 | A |
5056015 | Baldwin et al. | Oct 1991 | A |
5073864 | Methvin et al. | Dec 1991 | A |
5113516 | Johnson | May 1992 | A |
5140685 | Sipple et al. | Aug 1992 | A |
5142683 | Burkhardt, Jr. et al. | Aug 1992 | A |
5155831 | Emma et al. | Oct 1992 | A |
5155854 | Flynn et al. | Oct 1992 | A |
5165025 | Lass | Nov 1992 | A |
5168555 | Byers et al. | Dec 1992 | A |
5170484 | Grondalski | Dec 1992 | A |
5173897 | Schrodi et al. | Dec 1992 | A |
5187800 | Sutherland | Feb 1993 | A |
5189636 | Patti et al. | Feb 1993 | A |
5202972 | Gusefski et al. | Apr 1993 | A |
5220669 | Baum et al. | Jun 1993 | A |
5247671 | Adkins et al. | Sep 1993 | A |
5255239 | Taborn et al. | Oct 1993 | A |
5263169 | Genusov et al. | Nov 1993 | A |
5274770 | Khim Yeoh et al. | Dec 1993 | A |
5347648 | Stamm et al. | Sep 1994 | A |
5357617 | Davis et al. | Oct 1994 | A |
5363448 | Koopman, Jr. et al. | Nov 1994 | A |
5367678 | Lee et al. | Nov 1994 | A |
5390329 | Gaertner et al. | Feb 1995 | A |
5392391 | Caulk, Jr. et al. | Feb 1995 | A |
5392411 | Ozaki | Feb 1995 | A |
5392412 | McKenna | Feb 1995 | A |
5394530 | Kitta | Feb 1995 | A |
5404464 | Bennett | Apr 1995 | A |
5404482 | Stamm et al. | Apr 1995 | A |
5428779 | Allegrucci et al. | Jun 1995 | A |
5428809 | Coffin et al. | Jun 1995 | A |
5432918 | Stamm | Jul 1995 | A |
5436626 | Fujiwara et al. | Jul 1995 | A |
5442756 | Grochowski et al. | Aug 1995 | A |
5448702 | Garcia, Jr. et al. | Sep 1995 | A |
5450351 | Heddes | Sep 1995 | A |
5450603 | Davies | Sep 1995 | A |
5452437 | Richey et al. | Sep 1995 | A |
5459842 | Begun et al. | Oct 1995 | A |
5463625 | Yasrebi | Oct 1995 | A |
5463746 | Brodnax et al. | Oct 1995 | A |
5467452 | Blum et al. | Nov 1995 | A |
5481683 | Karim | Jan 1996 | A |
5487159 | Byers et al. | Jan 1996 | A |
5509130 | Trauben et al. | Apr 1996 | A |
5517628 | Morrison et al. | May 1996 | A |
5517648 | Bertone et al. | May 1996 | A |
5541920 | Angle et al. | Jul 1996 | A |
5542070 | LeBlanc et al. | Jul 1996 | A |
5542088 | Jennings, Jr. et al. | Jul 1996 | A |
5544236 | Andruska et al. | Aug 1996 | A |
5544337 | Beard et al. | Aug 1996 | A |
5550816 | Hardwick et al. | Aug 1996 | A |
5557766 | Takiguchi et al. | Sep 1996 | A |
5568617 | Kametani | Oct 1996 | A |
5572690 | Molnar et al. | Nov 1996 | A |
5574922 | James | Nov 1996 | A |
5574939 | Keckler et al. | Nov 1996 | A |
5592622 | Isfeld et al. | Jan 1997 | A |
5600812 | Park | Feb 1997 | A |
5600848 | Sproull et al. | Feb 1997 | A |
5606676 | Grochowski et al. | Feb 1997 | A |
5610864 | Manning | Mar 1997 | A |
5613071 | Rankin et al. | Mar 1997 | A |
5613136 | Casavant et al. | Mar 1997 | A |
5623489 | Cotton et al. | Apr 1997 | A |
5627829 | Gleeson et al. | May 1997 | A |
5630130 | Perotto et al. | May 1997 | A |
5640538 | Dyer et al. | Jun 1997 | A |
5644623 | Gulledge | Jul 1997 | A |
5649157 | Williams | Jul 1997 | A |
5652583 | Kang | Jul 1997 | A |
5659687 | Kim et al. | Aug 1997 | A |
5659722 | Blaner et al. | Aug 1997 | A |
5669012 | Shimizu et al. | Sep 1997 | A |
5680564 | Divivier et al. | Oct 1997 | A |
5680641 | Sidman | Oct 1997 | A |
5689566 | Nguyen | Nov 1997 | A |
5692167 | Grochowski et al. | Nov 1997 | A |
5699537 | Sharangpani et al. | Dec 1997 | A |
5701435 | Chi | Dec 1997 | A |
5704054 | Bhattacharya | Dec 1997 | A |
5717760 | Satterfield | Feb 1998 | A |
5717898 | Kagan et al. | Feb 1998 | A |
5721869 | Imakawa | Feb 1998 | A |
5721870 | Matsumoto | Feb 1998 | A |
5724563 | Hasegawa | Mar 1998 | A |
5742587 | Zornig et al. | Apr 1998 | A |
5742782 | Ito et al. | Apr 1998 | A |
5742822 | Motomura | Apr 1998 | A |
5745913 | Pattin et al. | Apr 1998 | A |
5748950 | White et al. | May 1998 | A |
5751987 | Mahant Shetti et al. | May 1998 | A |
5761507 | Govett | Jun 1998 | A |
5761522 | Hisanaga et al. | Jun 1998 | A |
5781774 | Krick | Jul 1998 | A |
5784649 | Begur et al. | Jul 1998 | A |
5784712 | Byers et al. | Jul 1998 | A |
5787454 | Rohlman | Jul 1998 | A |
5796413 | Shipp et al. | Aug 1998 | A |
5797043 | Lewis et al. | Aug 1998 | A |
5802373 | Yates et al. | Sep 1998 | A |
5809235 | Sharma et al. | Sep 1998 | A |
5809530 | Samra et al. | Sep 1998 | A |
5812811 | Dubey et al. | Sep 1998 | A |
5812839 | Hoyt et al. | Sep 1998 | A |
5812868 | Moyer et al. | Sep 1998 | A |
5815698 | Holmann et al. | Sep 1998 | A |
5815714 | Shridhar et al. | Sep 1998 | A |
5819080 | Dutton et al. | Oct 1998 | A |
5822619 | Sidwell | Oct 1998 | A |
5828746 | Ardon | Oct 1998 | A |
5828863 | Barrett et al. | Oct 1998 | A |
5832215 | Kato et al. | Nov 1998 | A |
5832258 | Kiuchi et al. | Nov 1998 | A |
5835755 | Stellwagen, Jr. | Nov 1998 | A |
5838975 | Abramson et al. | Nov 1998 | A |
5848276 | King et al. | Dec 1998 | A |
5854922 | Gravenstein et al. | Dec 1998 | A |
5857104 | Natarjan et al. | Jan 1999 | A |
5859789 | Sidwell | Jan 1999 | A |
5859790 | Sidwell | Jan 1999 | A |
5860085 | Stormon et al. | Jan 1999 | A |
5860158 | Pai et al. | Jan 1999 | A |
5870597 | Panwar et al. | Feb 1999 | A |
5872963 | Bitar et al. | Feb 1999 | A |
5875355 | Sidwell et al. | Feb 1999 | A |
5875470 | Dreibelbis et al. | Feb 1999 | A |
5884069 | Sidwell | Mar 1999 | A |
5886992 | Raatikainen et al. | Mar 1999 | A |
5887134 | Ebrahim | Mar 1999 | A |
5890208 | Kwon | Mar 1999 | A |
5892979 | Shiraki et al. | Apr 1999 | A |
5898866 | Atkins et al. | Apr 1999 | A |
5900025 | Sollars | May 1999 | A |
5905876 | Pawlowski et al. | May 1999 | A |
5905889 | Wilhelm, Jr. | May 1999 | A |
5915123 | Mirsky et al. | Jun 1999 | A |
5923872 | Chrysos et al. | Jul 1999 | A |
5926646 | Pickett et al. | Jul 1999 | A |
5928358 | Takayama et al. | Jul 1999 | A |
5933627 | Parady | Aug 1999 | A |
5937177 | Molnar et al. | Aug 1999 | A |
5937187 | Kosche et al. | Aug 1999 | A |
5938736 | Muller et al. | Aug 1999 | A |
5940612 | Brady et al. | Aug 1999 | A |
5940866 | Chisholm et al. | Aug 1999 | A |
5943491 | Sutherland et al. | Aug 1999 | A |
5944816 | Dutton et al. | Aug 1999 | A |
5946222 | Redford | Aug 1999 | A |
5946487 | Dangelo | Aug 1999 | A |
5948081 | Foster | Sep 1999 | A |
5951679 | Anderson et al. | Sep 1999 | A |
5956514 | Wen et al. | Sep 1999 | A |
5958031 | Kim | Sep 1999 | A |
5961628 | Nguyen et al. | Oct 1999 | A |
5970013 | Fischer et al. | Oct 1999 | A |
5978838 | Mohamed et al. | Nov 1999 | A |
5983274 | Hyder et al. | Nov 1999 | A |
5993627 | Anderson et al. | Nov 1999 | A |
5996068 | Dwyer, III et al. | Nov 1999 | A |
6002881 | York et al. | Dec 1999 | A |
6005575 | Colleran et al. | Dec 1999 | A |
6009505 | Thayer et al. | Dec 1999 | A |
6009515 | Steele, Jr. | Dec 1999 | A |
6012151 | Mano | Jan 2000 | A |
6014729 | Lannan et al. | Jan 2000 | A |
6023742 | Ebeling et al. | Feb 2000 | A |
6029228 | Cai et al. | Feb 2000 | A |
6052769 | Huff et al. | Apr 2000 | A |
6058168 | Braband | May 2000 | A |
6058465 | Nguyen | May 2000 | A |
6061710 | Eickemeyer et al. | May 2000 | A |
6061711 | Song et al. | May 2000 | A |
6067585 | Hoang | May 2000 | A |
6070231 | Ottinger | May 2000 | A |
6072781 | Feeney et al. | Jun 2000 | A |
6073215 | Snyder | Jun 2000 | A |
6076158 | Sites et al. | Jun 2000 | A |
6079008 | Clery, III | Jun 2000 | A |
6079014 | Papworth et al. | Jun 2000 | A |
6085215 | Ramakrishnan et al. | Jul 2000 | A |
6085294 | Van Doren et al. | Jul 2000 | A |
6092127 | Tausheck | Jul 2000 | A |
6092158 | Harriman et al. | Jul 2000 | A |
6092175 | Levy et al. | Jul 2000 | A |
6100905 | Sidwell | Aug 2000 | A |
6101599 | Wright et al. | Aug 2000 | A |
6112016 | MacWilliams et al. | Aug 2000 | A |
6115777 | Zahir et al. | Sep 2000 | A |
6115811 | Steele, Jr. | Sep 2000 | A |
6134665 | Klein et al. | Oct 2000 | A |
6139199 | Rodriguez | Oct 2000 | A |
6141348 | Muntz | Oct 2000 | A |
6141689 | Yasrebi | Oct 2000 | A |
6141765 | Sherman | Oct 2000 | A |
6144669 | Williams et al. | Nov 2000 | A |
6145054 | Mehrotra et al. | Nov 2000 | A |
6145077 | Sidwell et al. | Nov 2000 | A |
6145123 | Torrey et al. | Nov 2000 | A |
6157955 | Narad et al. | Dec 2000 | A |
6157988 | Dowling | Dec 2000 | A |
6160562 | Chin et al. | Dec 2000 | A |
6182177 | Harriman | Jan 2001 | B1 |
6195676 | Spix et al. | Feb 2001 | B1 |
6195739 | Wright et al. | Feb 2001 | B1 |
6199133 | Schnell | Mar 2001 | B1 |
6201807 | Prasanna | Mar 2001 | B1 |
6205468 | Diepstraten et al. | Mar 2001 | B1 |
6212542 | Kahle et al. | Apr 2001 | B1 |
6212611 | Nizar et al. | Apr 2001 | B1 |
6216220 | Hwang | Apr 2001 | B1 |
6223207 | Lucovsky et al. | Apr 2001 | B1 |
6223208 | Kiefer et al. | Apr 2001 | B1 |
6223238 | Meyer et al. | Apr 2001 | B1 |
6223277 | Karguth | Apr 2001 | B1 |
6223279 | Nishimura et al. | Apr 2001 | B1 |
6230119 | Mitchell | May 2001 | B1 |
6230230 | Joy et al. | May 2001 | B1 |
6230261 | Henry et al. | May 2001 | B1 |
6247025 | Bacon | Jun 2001 | B1 |
6256713 | Audityan et al. | Jul 2001 | B1 |
6259699 | Opalka et al. | Jul 2001 | B1 |
6269391 | Gillespie | Jul 2001 | B1 |
6272616 | Fernando et al. | Aug 2001 | B1 |
6275505 | O Loughlin et al. | Aug 2001 | B1 |
6275508 | Aggarwal et al. | Aug 2001 | B1 |
6279066 | Velingker | Aug 2001 | B1 |
6279113 | Vaidya | Aug 2001 | B1 |
6289011 | Seo et al. | Sep 2001 | B1 |
6298370 | Tang et al. | Oct 2001 | B1 |
6304956 | Tran | Oct 2001 | B1 |
6307789 | Wolrich et al. | Oct 2001 | B1 |
6314510 | Saulsbury et al. | Nov 2001 | B1 |
6324624 | Wolrich et al. | Nov 2001 | B1 |
6338133 | Schroter | Jan 2002 | B1 |
6345334 | Nakagawa et al. | Feb 2002 | B1 |
6347344 | Baker et al. | Feb 2002 | B1 |
6351808 | Joy et al. | Feb 2002 | B1 |
6356962 | Kasper | Mar 2002 | B1 |
6360262 | Guenthner et al. | Mar 2002 | B1 |
6373848 | Allison et al. | Apr 2002 | B1 |
6378124 | Bates et al. | Apr 2002 | B1 |
6378125 | Bates et al. | Apr 2002 | B1 |
6385720 | Tanaka et al. | May 2002 | B1 |
6389449 | Nemirovsky et al. | May 2002 | B1 |
6393483 | Latif et al. | May 2002 | B1 |
6401155 | Saville et al. | Jun 2002 | B1 |
6408325 | Shaylor | Jun 2002 | B1 |
6415338 | Habot | Jul 2002 | B1 |
6426940 | Seo et al. | Jul 2002 | B1 |
6427196 | Adiletta et al. | Jul 2002 | B1 |
6430626 | Witkowski et al. | Aug 2002 | B1 |
6434145 | Opsasnick et al. | Aug 2002 | B1 |
6442669 | Wright et al. | Aug 2002 | B2 |
6446190 | Barry et al. | Sep 2002 | B1 |
6463072 | Wolrich et al. | Oct 2002 | B1 |
6496847 | Bugnion et al. | Dec 2002 | B1 |
6505229 | Turner et al. | Jan 2003 | B1 |
6523108 | James et al. | Feb 2003 | B1 |
6532509 | Wolrich et al. | Mar 2003 | B1 |
6543049 | Bates et al. | Apr 2003 | B1 |
6552826 | Adler et al. | Apr 2003 | B2 |
6560629 | Harris | May 2003 | B1 |
6560667 | Wolrich et al. | May 2003 | B1 |
6560671 | Samra et al. | May 2003 | B1 |
6564316 | Perets et al. | May 2003 | B1 |
6574702 | Khanna et al. | Jun 2003 | B2 |
6577542 | Wolrich et al. | Jun 2003 | B2 |
6584522 | Wolrich et al. | Jun 2003 | B1 |
6587906 | Wolrich et al. | Jul 2003 | B2 |
6606704 | Adiletta et al. | Aug 2003 | B1 |
6625654 | Wolrich et al. | Sep 2003 | B1 |
6629237 | Wolrich et al. | Sep 2003 | B2 |
6631430 | Wolrich et al. | Oct 2003 | B1 |
6631462 | Wolrich et al. | Oct 2003 | B1 |
6661794 | Wolrich et al. | Dec 2003 | B1 |
6667920 | Wolrich et al. | Dec 2003 | B2 |
6668317 | Bernstein et al. | Dec 2003 | B1 |
6681300 | Wolrich et al. | Jan 2004 | B2 |
6694380 | Wolrich et al. | Feb 2004 | B1 |
6697935 | Borkenhagen et al. | Feb 2004 | B1 |
6718457 | Tremblay et al. | Apr 2004 | B2 |
6784889 | Radke | Aug 2004 | B1 |
6836838 | Wright et al. | Dec 2004 | B1 |
6862676 | Knapp et al. | Mar 2005 | B1 |
6934951 | Wilkinson et al. | Aug 2005 | B2 |
6971103 | Hokenek et al. | Nov 2005 | B2 |
6976095 | Wolrich et al. | Dec 2005 | B1 |
6983350 | Adiletta et al. | Jan 2006 | B1 |
7020871 | Bernstein et al. | Mar 2006 | B2 |
7181594 | Wilkinson et al. | Feb 2007 | B2 |
7185224 | Fredenburg et al. | Feb 2007 | B1 |
7191309 | Wolrich et al. | Mar 2007 | B1 |
7302549 | Wilkinson et al. | Nov 2007 | B2 |
20020038403 | Wolrich et al. | Mar 2002 | A1 |
20020053017 | Adiletta et al. | May 2002 | A1 |
20020056037 | Wolrich et al. | May 2002 | A1 |
20030041228 | Rosenbluth et al. | Feb 2003 | A1 |
20030145159 | Adiletta et al. | Jul 2003 | A1 |
20040039895 | Wolrich et al. | Feb 2004 | A1 |
20040054880 | Bernstein et al. | Mar 2004 | A1 |
20040071152 | Wolrich et al. | Apr 2004 | A1 |
20040073728 | Wolrich et al. | Apr 2004 | A1 |
20040073778 | Adiletta et al. | Apr 2004 | A1 |
20040098496 | Wolrich et al. | May 2004 | A1 |
20040109369 | Wolrich et al. | Jun 2004 | A1 |
20040205747 | Bernstein et al. | Oct 2004 | A1 |
20070234009 | Wolrich et al. | Oct 2007 | A1 |
Number | Date | Country |
---|---|---|
0 130 381 | Jan 1985 | EP |
0 379 709 | Aug 1990 | EP |
0 463 855 | Jan 1992 | EP |
0 464 715 | Jan 1992 | EP |
0 476 628 | Mar 1992 | EP |
0 633 678 | Jan 1995 | EP |
0 696 772 | Feb 1996 | EP |
0 745 933 | Dec 1996 | EP |
0 809 180 | Nov 1997 | EP |
0 863 462 | Sep 1998 | EP |
59111533 | Jun 1984 | JP |
WO 9415287 | Jul 1994 | WO |
WO 9738372 | Oct 1997 | WO |
WO 0115718 | Mar 2001 | WO |
WO 0116697 | Mar 2001 | WO |
WO 0116698 | Mar 2001 | WO |
WO 0116702 | Mar 2001 | WO |
WO 0116703 | Mar 2001 | WO |
WO 0116713 | Mar 2001 | WO |
WO 0116714 | Mar 2001 | WO |
WO 0116715 | Mar 2001 | WO |
WO 0116716 | Mar 2001 | WO |
WO 0116718 | Mar 2001 | WO |
WO 0116722 | Mar 2001 | WO |
WO 0116758 | Mar 2001 | WO |
WO 0116769 | Mar 2001 | WO |
WO 0116770 | Mar 2001 | WO |
WO 0116782 | Mar 2001 | WO |
WO 0118646 | Mar 2001 | WO |
WO 0141530 | Jun 2001 | WO |
WO 0148596 | Jul 2001 | WO |
WO 0148599 | Jul 2001 | WO |
WO 0148606 | Jul 2001 | WO |
WO 0148619 | Jul 2001 | WO |
WO 0150247 | Jul 2001 | WO |
WO 0150679 | Jul 2001 | WO |
WO03019399 | Mar 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20030191866 A1 | Oct 2003 | US |