The forgoing and other features of the invention are hereinafter discussed with reference to the drawing.
The spatial position of the infrared camera 1 relative to a reference or global coordinate system is known to the computer 2. Alternatively, the position of the camera 1 may be determined by a tracking system (not shown) that tracks a reference array 6 attached to the camera, wherein the tracking system provides the spatial position to the computer 2. The position of the patient 4 may be known or ascertained by ascertaining the position and/or orientation of the reference star 5 arranged on the patient's head.
The infrared camera 1, when placed in a first position, can detect at least a part or all of the quantum dots 3 by detecting infrared radiation emitted by the quantum dots 3. Data collected by the camera 1 may be provided to the computer 2.
The camera may include an exciter 7 for exciting the radiation marking elements such that they emit radiation. The excited 7 may be arranged on or in the camera 1.
The computer 2 can ascertain the three-dimensional spatial position of the detected quantum dots 3 from the position of the camera 1 relative to the reference coordinate system and from the detected infrared radiation. The infrared camera 1 also can be moved to another position in which it can detect another part of the quantum dots 3 and then provide the data to the computer 2, such that the three-dimensional spatial position of the quantum dots 3 detected in the second position also can be ascertained by the computer 2.
The quantum dots 3 are preferably detected from at least two different positions of the camera 1, such that the spatial position of the quantum dots 3 can be deduced from the detected radiation in the different recording positions of the camera 1. If most or all of the spatial positions of the quantum dots 3 are known relative to the reference or global coordinate system, then the computer 2 can reconstruct or ascertain the surface of the patient's face 4 from the ascertained positions of the quantum dots 3.
The surface of the patient's face 4 is thus known in three-dimensional space and can be registered with other patient data sets. These patient data sets may include, for example, pre-operatively obtained recordings or recordings of the patient taken by means of imaging methods.
Although the invention has been shown and described with respect to a certain preferred embodiment or embodiments, it is obvious that equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In particular regard to the various functions performed by the above described elements (components, assemblies, devices, compositions, etc.), the terms (including a reference to a “means”) used to describe such elements are intended to correspond, unless otherwise indicated, to any element which performs the specified function of the described element (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated exemplary embodiment or embodiments of the invention. In addition, while a particular feature of the invention may have been described above with respect to only one or more of several illustrated embodiments, such feature may be combined with one or more other features of the other embodiments, as may be desired and advantageous for any given or particular application.
Number | Date | Country | Kind |
---|---|---|---|
06 011 219.0 | May 2006 | EP | regional |
This application claims priority of U.S. Provisional Application No. 60/806,502 filed on Jul. 3, 2006, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60806502 | Jul 2006 | US |