This invention pertains to the field of electrographic printing and more particularly to correcting registration errors in printing systems that utilize a white toner.
Electrophotography is a useful process for printing images on a receiver (or “imaging substrate”), such as a piece or sheet of paper or another planar medium (e.g., glass, fabric, metal, or other objects) as will be described below. In this process, an electrostatic latent image is formed on a photoreceptor by uniformly charging the photoreceptor and then discharging selected areas of the uniform charge to yield an electrostatic charge pattern corresponding to the desired image (i.e., a “latent image”).
After the latent image is formed, charged toner particles are brought into the vicinity of the photoreceptor and are attracted to the latent image to develop the latent image into a toner image. Note that the toner image may not be visible to the naked eye depending on the composition of the toner particles (e.g., clear toner).
After the latent image is developed into a toner image on the photoreceptor, a suitable receiver is brought into juxtaposition with the toner image. A suitable electric field is applied to transfer the toner particles of the toner image to the receiver to form the desired print image on the receiver. The imaging process is typically repeated many times with reusable photoreceptors.
The receiver is then removed from its operative association with the photoreceptor and subjected to heat or pressure to permanently fix (i.e., “fuse”) the print image to the receiver. Plural print images (e.g., separation images of different colors) can be overlaid on the receiver before fusing to form a multi-color print image on the receiver.
When printing a plurality of color channels, one problem which can occur is registration errors where the printed color channels are offset from one another, either in the cross-track or in-track directions or both. These errors are typically addressed by printing registration marks which can be measured to characterize any offsets between the actual positions and the expected positions of the registration marks. The positions of subsequently printed images can then be adjusted in order to bring the color channels into alignment. This approach has been found to work well in conventional printing systems which use a set of colored toners (e.g., CMYK). However, some printing systems utilize inks with white toners, or toners with a very low colorant level. In such cases, conventional sensors that are used to measure the positions of the registration marks typically can't reliably detect the positions of the registration marks.
There remains a need for a registration system for an electrophotographic printer which can detect the position of registration marks printed with a white toner or toners with a very low colorant level.
The present invention represents an electrophotographic printing system for printing with a set of toners including a white toner, including:
This invention has the advantage that registration characteristics for white toners and other weakly-pigmented toners can be accurately determined, even when it is the first toner that is printed.
It is to be understood that the attached drawings are for purposes of illustrating the concepts of the invention and may not be to scale. Identical reference numerals have been used, where possible, to designate identical features that are common to the figures.
The invention is inclusive of combinations of the embodiments described herein. References to “a particular embodiment” and the like refer to features that are present in at least one embodiment of the invention. Separate references to “an embodiment” or “particular embodiments” or the like do not necessarily refer to the same embodiment or embodiments; however, such embodiments are not mutually exclusive, unless so indicated, or as are readily apparent to one of skill in the art. The use of singular or plural in referring to the “method” or “methods” and the like is not limiting. It should be noted that, unless otherwise explicitly noted or required by context, the word “or” is used in this disclosure in a non-exclusive sense.
As used herein, “sheet” is a discrete piece of media, such as receiver media for an electrophotographic printer (described below). Sheets have a length and a width. Sheets are folded along fold axes (e.g., positioned in the center of the sheet in the length dimension, and extending the full width of the sheet). The folded sheet contains two “leaves,” each leaf being that portion of the sheet on one side of the fold axis. The two sides of each leaf are referred to as “pages.” “Face” refers to one side of the sheet, whether before or after folding.
As used herein, “toner particles” are particles of one or more material(s) that are transferred by an electrophotographic (EP) printer to a receiver to produce a desired effect or structure (e.g., a print image, texture, pattern, or coating) on the receiver. Toner particles can be ground from larger solids, or chemically prepared (e.g., precipitated from a solution of a pigment and a dispersant using an organic solvent), as is known in the art. Toner particles can have a range of diameters (e.g., less than 8 μm, on the order of 10-15 μm, up to approximately 30 μm, or larger), where “diameter” preferably refers to the volume-weighted median diameter, as determined by a device such as a Coulter Multisizer. When practicing this invention, it is preferable to use larger toner particles (i.e., those having diameters of at least 20 μm) in order to obtain the desirable toner stack heights that would enable macroscopic toner relief structures to be formed.
“Toner” refers to a material or mixture that contains toner particles, and that can be used to form an image, pattern, or coating when deposited on an imaging member including a photoreceptor, a photoconductor, or an electrostatically-charged or magnetic surface. Toner can be transferred from the imaging member to a receiver. Toner is also referred to in the art as marking particles, dry ink, or developer, but note that herein “developer” is used differently, as described below. Toner can be a dry mixture of particles or a suspension of particles in a liquid toner base.
As mentioned already, toner includes toner particles; it can also include other types of particles. The particles in toner can be of various types and have various properties. Such properties can include absorption of incident electromagnetic radiation (e.g., particles containing colorants such as dyes or pigments), absorption of moisture or gasses (e.g., desiccants or getters), suppression of bacterial growth (e.g., biocides, particularly useful in liquid-toner systems), adhesion to the receiver (e.g., binders), electrical conductivity or low magnetic reluctance (e.g., metal particles), electrical resistivity, texture, gloss, magnetic remanence, florescence, resistance to etchants, and other properties of additives known in the art.
In single-component or mono-component development systems, “developer” refers to toner alone. In these systems, none, some, or all of the particles in the toner can themselves be magnetic. However, developer in a mono-component system does not include magnetic carrier particles. In dual-component, two-component, or multi-component development systems, “developer” refers to a mixture including toner particles and magnetic carrier particles, which can be electrically-conductive or -non-conductive. Toner particles can be magnetic or non-magnetic. The carrier particles can be larger than the toner particles (e.g., 15-20 μm or 20-300 μm in diameter). A magnetic field is used to move the developer in these systems by exerting a force on the magnetic carrier particles. The developer is moved into proximity with an imaging member or transfer member by the magnetic field, and the toner or toner particles in the developer are transferred from the developer to the member by an electric field, as will be described further below. The magnetic carrier particles are not intentionally deposited on the member by action of the electric field; only the toner is intentionally deposited. However, magnetic carrier particles, and other particles in the toner or developer, can be unintentionally transferred to an imaging member. Developer can include other additives known in the art, such as those listed above for toner. Toner and carrier particles can be substantially spherical or non-spherical.
The electrophotographic process can be embodied in devices including printers, copiers, scanners, and facsimiles, and analog or digital devices, all of which are referred to herein as “printers.” Various embodiments described herein are useful with electrostatographic printers such as electrophotographic printers that employ toner developed on an electrophotographic receiver, and ionographic printers and copiers that do not rely upon an electrophotographic receiver. Electrophotography and ionography are types of electrostatography (printing using electrostatic fields), which is a subset of electrography (printing using electric fields). The present invention can be practiced using any type of electrographic printing system, including electrophotographic and ionographic printers.
A digital reproduction printing system (“printer”) typically includes a digital front-end processor (DFE), a print engine (also referred to in the art as a “marking engine”) for applying toner to the receiver, and one or more post-printing finishing system(s) (e.g., a UV coating system, a glosser system, or a laminator system). A printer can reproduce pleasing black-and-white or color images onto a receiver. A printer can also produce selected patterns of toner on a receiver, which patterns (e.g., surface textures) do not correspond directly to a visible image.
The DFE receives input electronic files (such as Postscript command files) composed of images from other input devices (e.g., a scanner, a digital camera or a computer-generated image processor). Within the context of the present invention, images can include photographic renditions of scenes, as well as other types of visual content such as text or graphical elements. Images can also include invisible content such as specifications of texture, gloss or protective coating patterns.
The DFE can include various function processors, such as a raster image processor (RIP), image positioning processor, image manipulation processor, color processor, or image storage processor. The DFE rasterizes input electronic files into image bitmaps for the print engine to print. In some embodiments, the DFE permits a human operator to set up parameters such as layout, font, color, paper type, or post-finishing options. The print engine takes the rasterized image bitmap from the DFE and renders the bitmap into a form that can control the printing process from the exposure device to transferring the print image onto the receiver. The finishing system applies features such as protection, glossing, or binding to the prints. The finishing system can be implemented as an integral component of a printer, or as a separate machine through which prints are fed after they are printed.
The printer can also include a color management system that accounts for characteristics of the image printing process implemented in the print engine (e.g., the electrophotographic process) to provide known, consistent color reproduction characteristics. The color management system can also provide known color reproduction for different inputs (e.g., digital camera images or film images). Color management systems are well-known in the art, and any such system can be used to provide color corrections in accordance with the present invention.
In an embodiment of an electrophotographic modular printing machine useful with various embodiments (e.g., the NEXPRESS SX 3900 printer manufactured by Eastman Kodak Company of Rochester, NY) color-toner print images are made in a plurality of color imaging modules arranged in tandem, and the print images are successively electrostatically transferred to a receiver adhered to a transport web moving through the modules. Colored toners include colorants, (e.g., dyes or pigments) which absorb specific wavelengths of visible light. Commercial machines of this type typically employ intermediate transfer members in the respective modules for transferring visible images from the photoreceptor and transferring print images to the receiver. In other electrophotographic printers, each visible image is directly transferred to a receiver to form the corresponding print image.
Electrophotographic printers having the capability to also deposit clear toner using an additional imaging module are also known. The provision of a clear-toner overcoat to a color print is desirable for providing features such as protecting the print from fingerprints, reducing certain visual artifacts or providing desired texture or surface finish characteristics. Clear toner uses particles that are similar to the toner particles of the color development stations but without colored material (e.g., dye or pigment) incorporated into the toner particles. However, a clear-toner overcoat can add cost and reduce color gamut of the print; thus, it is desirable to provide for operator/user selection to determine whether or not a clear-toner overcoat will be applied to the entire print. A uniform layer of clear toner can be provided. A layer that varies inversely according to heights of the toner stacks can also be used to establish level toner stack heights. The respective color toners are deposited one upon the other at respective locations on the receiver and the height of a respective color toner stack is the sum of the toner heights of each respective color. Uniform stack height provides the print with a more even or uniform gloss.
Referring to
In the illustrated embodiments, each receiver 42 can have up to five single-color toner images transferred in registration thereon during a single pass through the five printing modules 31, 32, 33, 34, 35 to form a pentachrome image. As used herein, the term “pentachrome” implies that in a print image, combinations of various of the five colors are combined to form other colors on the receiver at various locations on the receiver, and that all five colors participate to form process colors in at least some of the subsets. That is, each of the five colors of toner can be combined with toner of one or more of the other colors at a particular location on the receiver to form a color different than the colors of the toners combined at that location. In an exemplary embodiment, printing module 31 forms black (K) print images, printing module 32 forms yellow (Y) print images, printing module 33 forms magenta (M) print images, and printing module 34 forms cyan (C) print images.
Printing module 35 can form a red, blue, green, or other fifth print image, including an image formed from a clear toner (e.g., one lacking pigment). The four subtractive primary colors, cyan, magenta, yellow, and black, can be combined in various combinations of subsets thereof to form a representative spectrum of colors. The color gamut of a printer (i.e., the range of colors that can be produced by the printer) is dependent upon the materials used and the process used for forming the colors. The fifth color can therefore be added to improve the color gamut. In addition to adding to the color gamut, the fifth color can also be a specialty color toner or spot color, such as for making proprietary logos or colors that cannot be produced with only CMYK colors (e.g., metallic, fluorescent, or pearlescent colors), or a clear toner or tinted toner. Tinted toners absorb less light than they transmit, but do contain pigments or dyes that move the hue of light passing through them towards the hue of the tint. For example, a blue-tinted toner coated on white paper will cause the white paper to appear light blue when viewed under white light, and will cause yellows printed under the blue-tinted toner to appear slightly greenish under white light.
Receiver 42a is shown after passing through printing module 31. Print image 38 on receiver 42a includes unfused toner particles. Subsequent to transfer of the respective print images, overlaid in registration, one from each of the respective printing modules 31, 32, 33, 34, 35, receiver 42a is advanced to a fuser module 60 (i.e., a fusing or fixing assembly) to fuse the print image 38 to the receiver 42a. Transport web 81 transports the print-image-carrying receivers to the fuser module 60, which fixes the toner particles to the respective receivers, generally by the application of heat and pressure. The receivers are serially de-tacked from the transport web 81 to permit them to feed cleanly into the fuser module 60. The transport web 81 is then reconditioned for reuse at cleaning station 86 by cleaning and neutralizing the charges on the opposed surfaces of the transport web 81. A mechanical cleaning station (not shown) for scraping or vacuuming toner off transport web 81 can also be used independently or with cleaning station 86. The mechanical cleaning station can be disposed along the transport web 81 before or after cleaning station 86 in the direction of rotation of transport web 81.
Sensors can be positioned within the printer 100 to sense various quantities that can be useful for various process control operations.
In the illustrated embodiment, the fuser module 60 includes a heated fusing roller 62 and an opposing pressure roller 64 that form a fusing nip 66 therebetween. In an embodiment, fuser module 60 also includes a release fluid application substation 68 that applies release fluid, e.g., silicone oil, to fusing roller 62. Alternatively, wax-containing toner can be used without applying release fluid to the fusing roller 62. Other embodiments of fusers, both contact and non-contact, can be employed. For example, solvent fixing uses solvents to soften the toner particles so they bond with the receiver. Photoflash fusing uses short bursts of high-frequency electromagnetic radiation (e.g., ultraviolet light) to melt the toner. Radiant fixing uses lower-frequency electromagnetic radiation (e.g., infrared light) to more slowly melt the toner. Microwave fixing uses electromagnetic radiation in the microwave range to heat the receivers (primarily), thereby causing the toner particles to melt by heat conduction, so that the toner is fixed to the receiver.
The fused receivers (e.g., receiver 42b carrying fused image 39) are transported in series from the fuser module 60 along a path either to an output tray 69, or back to printing modules 31, 32, 33, 34, 35 to form an image on the backside of the receiver (i.e., to form a duplex print). Receivers 42b can also be transported to any suitable output accessory. For example, an auxiliary fuser or glossing assembly can provide a clear-toner overcoat. Printer 100 can also include multiple fuser modules 60 to support applications such as overprinting, as known in the art.
In various embodiments, between the fuser module 60 and the output tray 69, receiver 42b passes through a finisher 70. Finisher 70 performs various paper-handling operations, such as folding, stapling, saddle-stitching, collating, and binding.
Printer 100 includes main printer apparatus logic and control unit (LCU) 99, which receives input signals from various sensors associated with printer 100 and sends control signals to various components of printer 100. LCU 99 can include a microprocessor incorporating suitable look-up tables and control software executable by the LCU 99. It can also include a field-programmable gate array (FPGA), programmable logic device (PLD), programmable logic controller (PLC) (with a program in, e.g., ladder logic), microcontroller, or other digital control system. LCU 99 can include memory for storing control software and data. In some embodiments, sensors associated with the fuser module 60 provide appropriate signals to the LCU 99. In response to the sensor signals, the LCU 99 issues command and control signals that adjust the heat or pressure within fusing nip 66 and other operating parameters of fuser module 60. This permits printer 100 to print on receivers of various thicknesses and surface finishes, such as glossy or matte.
Image data for printing by printer 100 can be processed by a raster image processor (RIP; not shown), which can include a color separation screen generator or generators. The output of the RIP can be stored in frame or line buffers for transmission of the color separation print data to each of a set of respective LED writers associated with the printing modules 31, 32, 33, 34, 35 (e.g., for black (K), yellow (Y), magenta (M), cyan (C), and red (R) color channels, respectively). The RIP or color separation screen generator can be a part of printer 100 or remote therefrom. Image data processed by the RIP can be obtained from a color document scanner or a digital camera or produced by a computer or from a memory or network which typically includes image data representing a continuous image that needs to be reprocessed into halftone image data in order to be adequately represented by the printer. The RIP can perform image processing processes (e.g., color correction) in order to obtain the desired color print. Color image data is separated into the respective colors and converted by the RIP to halftone dot image data in the respective color (for example, using halftone matrices, which provide desired screen angles and screen rulings). The RIP can be a suitably-programmed computer or logic device and is adapted to employ stored or computed halftone matrices and templates for processing separated color image data into rendered image data in the form of halftone information suitable for printing. These halftone matrices can be stored in a screen pattern memory.
Charging subsystem 210 applies a uniform electrostatic charge to photoreceptor 206 of imaging member 111. In an exemplary embodiment, charging subsystem 210 includes a wire grid 213 having a selected voltage. Additional necessary components provided for control can be assembled about the various process elements of the respective printing modules. Meter 211 measures the uniform electrostatic charge provided by charging subsystem 210.
An exposure subsystem 220 is provided for selectively modulating the uniform electrostatic charge on photoreceptor 206 in an image-wise fashion by exposing photoreceptor 206 to electromagnetic radiation to form a latent electrostatic image. The uniformly-charged photoreceptor 206 is typically exposed to actinic radiation provided by selectively activating particular light sources in an LED array or a laser device outputting light directed onto photoreceptor 206. In embodiments using laser devices, a rotating polygon (not shown) is sometimes used to scan one or more laser beam(s) across the photoreceptor in the fast-scan direction. One pixel site is exposed at a time, and the intensity or duty cycle of the laser beam is varied at each dot site. In embodiments using an LED array, the array can include a plurality of LEDs arranged next to each other in a line, all dot sites in one row of dot sites on the photoreceptor can be selectively exposed simultaneously, and the intensity or duty cycle of each LED can be varied within a line exposure time to expose each pixel site in the row during that line exposure time.
As used herein, an “engine pixel” is the smallest addressable unit on photoreceptor 206 which the exposure subsystem 220 (e.g., the laser or the LED) can expose with a selected exposure different from the exposure of another engine pixel. Engine pixels can overlap (e.g., to increase addressability in the slow-scan direction). Each engine pixel has a corresponding engine pixel location, and the exposure applied to the engine pixel location is described by an engine pixel level.
The exposure subsystem 220 can be a write-white or write-black system. In a write-white or “charged-area-development” system, the exposure dissipates charge on areas of photoreceptor 206 to which toner should not adhere. Toner particles are charged to be attracted to the charge remaining on photoreceptor 206. The exposed areas therefore correspond to white areas of a printed page. In a write-black or “discharged-area development” system, the toner is charged to be attracted to a bias voltage applied to photoreceptor 206 and repelled from the charge on photoreceptor 206. Therefore, toner adheres to areas where the charge on photoreceptor 206 has been dissipated by exposure. The exposed areas therefore correspond to black areas of a printed page.
In the illustrated embodiment, meter 212 is provided to measure the post-exposure surface potential within a patch area of a latent image formed from time to time in a non-image area on photoreceptor 206. Other meters and components can also be included (not shown).
A development station 225 includes toning shell 226, which can be rotating or stationary, for applying toner of a selected color to the latent image on photoreceptor 206 to produce a developed image on photoreceptor 206 corresponding to the color of toner deposited at this printing module 31. Development station 225 is electrically biased by a suitable respective voltage to develop the respective latent image, which voltage can be supplied by a power supply (not shown). Developer is provided to toning shell 226 by a supply system (not shown) such as a supply roller, auger, or belt. Toner is transferred by electrostatic forces from development station 225 to photoreceptor 206. These forces can include Coulombic forces between charged toner particles and the charged electrostatic latent image, and Lorentz forces on the charged toner particles due to the electric field produced by the bias voltages.
In some embodiments, the development station 225 employs a two-component developer that includes toner particles and magnetic carrier particles. The exemplary development station 225 includes a magnetic core 227 to cause the magnetic carrier particles near toning shell 226 to form a “magnetic brush,” as known in the electrophotographic art. Magnetic core 227 can be stationary or rotating, and can rotate with a speed and direction the same as or different than the speed and direction of toning shell 226. Magnetic core 227 can be cylindrical or non-cylindrical, and can include a single magnet or a plurality of magnets or magnetic poles disposed around the circumference of magnetic core 227. Alternatively, magnetic core 227 can include an array of solenoids driven to provide a magnetic field of alternating direction. Magnetic core 227 preferably provides a magnetic field of varying magnitude and direction around the outer circumference of toning shell 226. Development station 225 can also employ a mono-component developer comprising toner, either magnetic or non-magnetic, without separate magnetic carrier particles.
Transfer subsystem 50 includes transfer backup member 113, and intermediate transfer member 112 for transferring the respective print image from photoreceptor 206 of imaging member 111 through a first transfer nip 201 to surface 216 of intermediate transfer member 112, and thence to a receiver 42 which receives respective toned print images 38 from each printing module in superposition to form a composite image thereon. The print image 38 is, for example, a separation of one color, such as cyan. Receiver 42 is transported by transport web 81. Transfer to a receiver is effected by an electrical field provided to transfer backup member 113 by power source 240, which is controlled by LCU 99. Receiver 42 can be any object or surface onto which toner can be transferred from imaging member 111 by application of the electric field. In this example, receiver 42 is shown prior to entry into a second transfer nip 202, and receiver 42a is shown subsequent to transfer of the print image 38 onto receiver 42a.
In the illustrated embodiment, the toner image is transferred from the photoreceptor 206 to the intermediate transfer member 112, and from there to the receiver 42. Registration of the separate toner images is achieved by registering the separate toner images on the receiver 42, as is done with the NEXPRESS SX 3900. In some embodiments, a single transfer member is used to sequentially transfer toner images from each color channel to the receiver 42. In other embodiments, the separate toner images can be transferred in register directly from the photoreceptor 206 in the respective printing module 31, 32, 33, 34, 25 to the receiver 42 without using a transfer member. Either transfer process is suitable when practicing this invention. An alternative method of transferring toner images involves transferring the separate toner images, in register, to a transfer member and then transferring the registered image to a receiver.
LCU 99 sends control signals to the charging subsystem 210, the exposure subsystem 220, and the respective development station 225 of each printing module 31, 32, 33, 34, 35 (
In a color printing system, it is important to accurately register the printed image data in the different color channels with each other. An exemplary configuration for characterizing in-track registration errors is illustrated in
The registration marks 310 include features such as bars or lines or reticules printed by each of the printing modules 31, 32, 33, 34, 35. The registration mark sensing system 320 measures the positions of each of these features and determines registration errors by comparing the measured positions to expected positions. The determined registration errors are then used to adjust the registration of subsequently printed images. In an exemplary embodiment, the in-track component of the registration errors is corrected by adjusting the timing at which the image data is written onto the photoreceptor 206 by the exposure subsystem 220 (
Detection of strongly pigmented toners such as black, yellow, magenta, and cyan is straightforward using the approach described with respect to
To determine the locations of the bar edges 312, 313, thresholds 318 can be defined corresponding to a defined percentage (e.g., 25%) of the peak edge detection for the first black bar 311K. The regions having edge detection signals that exceed this threshold (in both the positive and negative directions) are then identified, and the positions of first and second bar edges 312, 313 are determined by finding the local maxima (or minima) of the edge detection signal within each region. A bar position 315 for each of the color channels can be determined by finding the midpoint between the first bar edge 312 and the second bar edge 313.
The approach described in
The exemplary configuration shown in
In some embodiments, registration marks for other color channels can also be included in the second set of registration marks 310b. For example, the yellow toner may have a better contrast against the black reflector plate 326 of the second registration mark sensing system 320b than against the white reflector plate 326 of the first registration mark sensing system 320a. It can therefore be advantageous to include the yellow bar 311Y in the second set of registration marks 310b rather than the first set of registration marks 310a.
The method of the present invention can also be applied to other non-pigmented or weakly-pigmented toners besides white toners. For example, clear toners will have a diffuse scattering characteristic before they go through the fuser module 60 so that they will be more easily detectable against the black reflector plate 326 of the second registration mark sensing system 320b than against the white reflector plate 326 of the first registration mark sensing system 320a. Likewise, various other types of toners such as metallic toners may have a better contrast when measured with the second registration mark sensing system 320b.
In accordance with any of the disclosed embodiments, a registration correction system 350 uses the signals collected from the registration mark sensing systems 320a, 320b to make appropriate corrections to the registration of subsequently printed images. The registration mark sensing system 350 can be implemented using any appropriate data processing system such as the logic and control unit 99 to perform various analysis and provide various control signals.
In alternate embodiments, rather than providing two separate registration mark sensing systems 320a, 320b having different reflector plates 326, a means for changing the color of the backing behind the transport web 81 can be provided with a single registration mark sensing system 320. For example, a shutter system can be provided which can be opened or closed according to the color of the bar being measured. When the shutter is open it exposes a reflector plate having one color, and when it is closed the top surface of the shutter serves as a reflector plate having a second color. The shutter could be mechanical (e.g., utilizing a translational or rotational motion) or electro-optical (e.g., operating by re-orientation of a material based on an electrical switch). Such embodiments require the capability of rapidly switching between the two states as the different bars pass by the registration mark sensing system 320.
In another embodiment, rather than using two different registration mark sensing systems 320a, 320b having white and black reflector plates 326 (
To accomplish this, the color of the colored reflector plate 326 should preferably have a color which is significantly different than the colors of each of the toners used in the printing modules 31, 32, 33, 34, 35 of the printer 100. The sensor signals dm for the registration marks can be determined by integrating the product of the spectral sensitivity S(λ) of the registration mark sensing system 320 and the reflection spectra Rm(λ) of the printed registration marks 310 on the transport web 81 when positioned over the color reflector plate 326:
dm=ƒS(λ)Rm(λ)dλ (1)
The sensor signal dw for the bare transport web 81 can similarly be determined from the reflection spectrum Rw(λ) of the transport web 81 when positioned over the color reflector plate 326:
dw=∫S(λ)Rw(λ)dλ (2)
The difference between the sensor signals for the registration mark and the bare transport web defines a detection signal Dm:
Dm=|dw−dm| (3)
In an exemplary configuration, the color of the colored reflector plate 326 is selected so that the detection signal for the registration marks printed with each of the different toner colors exceeds a predefined threshold. Preferably, the threshold is defined as a fraction of the sensor signal for the bare transport web:
Dm≥Tddw (4)
where Td is a predefined fraction. In an exemplary embodiment, a threshold of Td=0.25 is used. The selection of the color of the colored reflection plate can be an iterative process where various reflection plate colors are evaluated until one is found which provides an adequate detection signal for each of the different toner colors.
In one exemplary embodiment, the colored reflection plate 326 has a gray color with an L* value selected to be intermediate to the L* values of each of the toners. For example, a large L* gap is typically found between the L* of white and yellow toners and the L* of the cyan and red toners. A colored reflection plate 326 having a gray color with an L* that is approximately in the middle of this L* gap can provide adequate detection signals in some configurations. In other embodiments, a colored reflection plate 326 having a gray color with an L* that is intermediate to the L* of the magenta and blue toners can provide adequate detection signals.
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations, combinations, and modifications can be effected by a person of ordinary skill in the art within the spirit and scope of the invention.
This application claims the benefit of U.S. Provisional Patent Application No. 63/249,112, filed Sep. 28, 2021, which is incorporated herein by reference in its entirety. Reference is made to commonly assigned, U.S. patent application Ser. No. 17/952,392 (now US Publication No. 2023/0100357), entitled: “Registration of white toner in an electrophotographic printer”, by K. Peter et al., which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5523823 | Ashikaga | Jun 1996 | A |
6421522 | Henderson et al. | Jul 2002 | B2 |
6480693 | Liston et al. | Nov 2002 | B2 |
6493012 | Buch et al. | Dec 2002 | B2 |
6496678 | Metzler et al. | Dec 2002 | B2 |
6519423 | Dreher et al. | Feb 2003 | B2 |
6522857 | Dreher et al. | Feb 2003 | B2 |
6532873 | Hunold et al. | Mar 2003 | B2 |
6553906 | Bucks et al. | Apr 2003 | B1 |
6587652 | Metzler | Jul 2003 | B2 |
6591747 | Buch et al. | Jul 2003 | B2 |
6619209 | Dreher et al. | Sep 2003 | B2 |
6718879 | Dreher et al. | Apr 2004 | B2 |
6817295 | Metzler | Nov 2004 | B2 |
6836635 | Metzler et al. | Dec 2004 | B2 |
6848361 | Metzler | Feb 2005 | B2 |
6889028 | Hunold et al. | May 2005 | B1 |
6920292 | Metzler | Jul 2005 | B2 |
6925278 | Boness et al. | Aug 2005 | B2 |
6934041 | Liston et al. | Aug 2005 | B2 |
7035557 | Boness et al. | Apr 2006 | B2 |
7593656 | Boness et al. | Sep 2009 | B2 |
8301048 | Boness et al. | Oct 2012 | B1 |
8351829 | Boness et al. | Jan 2013 | B2 |
8405879 | Boness et al. | Mar 2013 | B2 |
8625159 | Boness et al. | Jan 2014 | B2 |
9545796 | Liston et al. | Jan 2017 | B1 |
10209661 | Fukai | Feb 2019 | B2 |
20020136570 | Yamanaka | Sep 2002 | A1 |
20100051165 | Tombs | Mar 2010 | A1 |
20120097872 | Ito | Apr 2012 | A1 |
20140050496 | Furuta | Feb 2014 | A1 |
20180020108 | Nakayama | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
H05119572 | May 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20230098967 A1 | Mar 2023 | US |
Number | Date | Country | |
---|---|---|---|
63249112 | Sep 2021 | US |