This application claims the benefit of German Patent application No. 102011083805.8, filed Sep. 30, 2011, which is incorporated herein by reference as if fully set forth.
The present invention relates to a regulatable coolant pump of an internal combustion engine having a pump housing in which a pump shaft with associated impeller is rotatably mounted. The impeller conveys a coolant via an intake connection into a pressure channel of the coolant pump, a volume flow of the coolant pump being capable of being influenced by a guide plate. For this purpose, the guide plate externally surrounds the impeller at least in some regions, and can be displaced hydraulically in rotationally fixed fashion between two end positions by a pressure medium.
Vehicles are predominantly driven by water-cooled internal combustion engines. Through the use of a coolant pump, coolant medium is pumped in a closed circuit through coolant channels of the crankcase and of the cylinder head of the internal combustion engine, and the heated coolant medium is subsequently cooled back down in an air-water heat exchanger. To support the circulation of the coolant, a coolant pump is used, in particular driven directly by a belt drive. Due to an immediate coupling between the coolant pump and the crankshaft, the pump rotational speed is a function of the rotational speed of the internal combustion engine. It follows from this that, during a cold start of the internal combustion engine, the coolant circulates, delaying a desired rapid warming up of the internal combustion engine. In order to optimize the operation of internal combustion engines, it is necessary to reach the operating temperature as quickly as possible after a cold start. This reduces frictional losses and fuel consumption, and at the same time reduces emissions values. In order to achieve this effect, regulatable coolant pumps are used which have a conveyed volume flow that can be adapted to the cooling requirement of the internal combustion engine. After a cold start, first a zero conveying of the coolant pump is sought, and subsequently the volume flow for the cooling of the internal combustion engine continuously increases as a function of the temperature level that arises. In series of trials for optimizing the fuel consumption of internal combustion engines, rigorously applied measures for thermal management, inter alia in connection with regulated coolant pumps, succeeded in achieving a reduction in fuel consumption of ≧3%.
From DE 199 01 123 A1, a regulated coolant pump is known in which an external overlapping sliding element is allocated to the impeller as a measure for influencing the volume flow. The effective vane width of the impeller can be modified by the sliding element, which can be continuously axially adjusted by rotating a threaded guide.
DE 10 2008 046 424 A1 discloses a regulatable coolant pump for a coolant circuit of an internal combustion engine, driven by a traction mechanism drive. In order to influence a conveyed quantity, an axially displaceable guide disk is allocated to the impeller, said disc being axially displaceable by a push rod, placed inside the hollow shaft of the impeller, in connection with an actuator. The actuator comprises an anchor fixedly connected to the pushrod, said anchor being axially displaceable in a targeted manner via a proportional magnet. For this purpose, the electrically actuated actuator is situated before the belt pulley at the end face, and influences the axial constructive length of the coolant pump.
The regulated coolant pump according to DE 10 2005 062 200 A1 has a driven shaft, mounted in the pump housing, having an associated impeller and a valve slide that can be displaced pneumatically or hydraulically and that variably covers an outflow region of the impeller. On the valve slide there are situated a plurality of piston rods distributed about the circumference that run parallel to the pump shaft in the pump housing and that are guided in annular grooves or bores and are sealed in the pump housing by rod seals. The piston rods stand in operative connection at the annular groove with an annular piston placed in a pressure chamber. A displacement of the annular piston, acted on by pressure springs, and of the valve slide connected thereto takes place via charging of the pressure chamber with pressure, which has a pressure connection bore for this purpose.
The object of the present invention is to realize a simplified and component-optimized hydraulic displacement of the guide plate inside a regulatable coolant pump.
This object is achieved in connection with various aspects and advantageous developments of the invention as described below and in the claims.
The present invention is based on the general idea that the pressure medium acts immediately on the guide plate in order to displace it hydraulically. For this purpose, the guide plate, together with an end face of the pump shaft and the impeller, delimits a pressure chamber. Alternatively, the pressure chamber determined by the pump shaft and the impeller can include an insert, fashioned as an intermediate element pressed onto the end of the pump shaft and surrounded externally by the impeller. With a bushing fashioned as a circular cylinder sleeve, the guide plate engages with a positive fit in an annular groove, open at one side, of the insert or of the impeller. In order to avoid a loss of pressure and/or loss of pressure medium, the bushing is set in the annular groove in sealed fashion. A preferred construction of the guide plate provides the use of an insert having a relatively large diameter, such that, due to the geometric dependence, a large pressure surface is created for actuating the guide plate. For the purpose of unhindered actuating movement of the guide plate, a depth of the annular groove exceeds the length of the bushing. In comparison with known solutions, the present invention has the advantage that using simple means, small constructive size, a reduced number of components, and greater operational reliability, not only a reduction of the volume flow but also a desired zero conveying by the coolant pump can be achieved in the closed state of the guide plate. The constructive outlay for realizing the measure according to the present invention is advantageously low, because special measures are realized neither at the pump drive nor at the pump housing. In addition, there results a cost advantage due to simplified assembly of the guide plate.
According to one preferred embodiment of the present invention, the impeller has an insert having a one-part or multi-part construction. For the rotational fixing, one end of the pump shaft is preferably pressed with a non-positive fit into a central receptacle or bore of the insert. The insert, performing the function of an intermediate element, can be made of various materials, preferably of plastic, metal, or a steel material. The impeller is preferably connected with a material fit, for example by a plastic coating, to the insert, acting as an insert. Alternatively, it is possible to press the insert into the impeller.
In addition, for sealing the pressure chamber and guiding the guide plate, a sealing element is provided that is positioned in stationary fashion in the annular groove of the stationary insert or of the impeller, said sealing element being supported in sealing fashion on the inside on the bushing of the guide plate. As a sealing element, an 0-ring or a sealing element made of a highly elastic and wear-resistant plastic is suitable, whose sealing lip is held on the bushing with a non-positive fit. The elastic sealing element advantageously compensates tolerances due to manufacturing or due to thermal expansion of the components abutting one another. Alternatively to a one-part construction, a reinforced sealing element is suitable in which the reinforcement is for example pressed into the annular groove and the sealing material is vulcanized on. The sealing element is preferably made completely or partially of a thermoplastic material, preferably polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE). PTFE is suitable as a material due to its low coefficient of friction, good resistance to wear, and high resistance to the water-glycol mixture used in the coolant.
The design according to the present invention also provides that, for the axial displacement of the guide plate, the pressure medium flows into the pressure chamber via a longitudinal bore inside the pump shaft. For example, the pressure medium coming from a pressure medium source, guided via a control or regulating unit, can act immediately on the guide plate.
As a measure for avoiding an impermissibly high pressure level inside the pressure chamber, or for reducing the pressure, at least one radial passage is made in the bushing. For this purpose, a position of the opening is provided that, in an end position of the guide plate corresponding to the zero conveying of the coolant pump, enables a flowing off of a partial quantity of the coolant from the pressure chamber into a pressureless region or into an intake zone of the coolant pump.
In addition, with an outer rim oriented at a right angle the guide plate according to the present invention surrounds, with play, an outer contour of a rear wall of the impeller. The sealing of an annular gap that forms here is accomplished by a seal that is set in a radially oriented groove of the outer contour of the impeller rear wall, the seal lying against the rim of the guide plate at the inner side with a non-positive fit. This design supports the measure for realizing a zero conveying quantity of the coolant pump in an end position of the guide plate.
As a measure for ensuring the cooling of the internal combustion engine when there is failure of the actuator or of the pressure medium supply for displacing the guide plate, according to the present invention a failsafe device is provided. This is formed by a spring element situated in the annular groove of the insert that acts on the bushing of the guide plate, against the direction of force of the pressure medium. In case of damage, the spring element automatically shifts the guide plate into a position that corresponds to a maximum opening of the impeller and thus to the largest conveyed quantity of the coolant pump.
Further features of the present invention result from the following description of the drawings, showing a preferred exemplary embodiment.
For the continuous displacement of the guide plate 10 between two end positions defined by the pump cover 8 and the rear wall 6 of impeller 4, the pressure medium acts immediately on the guide plate 10. At the rear wall side, the guide plate 10 is connected in one piece to a cylindrically shaped bushing 13 oriented concentrically to a longitudinal axis of the coolant pump 1, said bushing being fitted with play into an annular groove 14. In order to seal the pressure chamber 12, a sealing element 15, positioned in a circumferential groove 16 of the insert 5, is supported on the inner side on a bushing 13, and prevents loss of pressure medium and thus loss of pressure. In
1 coolant pump
2 pump housing
3 pump shaft
4 impeller
5 insert
6 rear wall
7 vane
8 pump cover
9 intake connection
10 guide plate
11 pressure medium supply
12 pressure chamber
13 bushing
14 annular groove
15 sealing element
16 circumferential groove
17 rim
18 annular gap
19 seal
20 groove
21 opening
22 passage
23 failsafe device
24 collar
25 stop
26 spring mechanism
27 receptacle
Number | Date | Country | Kind |
---|---|---|---|
102011083805.8 | Sep 2011 | DE | national |