The present application claims priority to German patent application No. 10 2021 201 141.1, filed on Feb. 8, 2021, which is hereby incorporated by reference.
The technical field relates to a regulating device and to a method for regulating the steering angle of a vehicle.
Electromechanical steering systems for vehicles (also EPS: Electric Power Steering) are in principle known. A program-controlled electric actuator supports and superposes the steering movements of the driver by transferring forces to the steering mechanics.
In addition, it is known that electromechanical steering systems have regulating devices in order to moderate or suppress disturbing influences. Such regulating devices have an integrating regulating component in order to compensate for the transverse forces building up.
Known regulating devices have an interface via which the control behavior can be adjusted, for example, in a manner that depends on the driving conditions or the situation. This can reduce oscillating steering movements of the electromechanical steering system during autonomous or partially autonomous driving and improve cooperative driving in which the driver and the steering actuator simultaneously control the vehicle. A disadvantage of the integrating regulating component is namely that a deviation of the steering angle occasioned by the human driver with respect to the steering angle calculated by the steering angle regulation occasions an increasing counter-steering torque of the actuator, which is perceived as being very disturbing during cooperative driving. This can be prevented or at least moderated by influencing the control behavior via the interface of the regulating device.
It is problematic that it is not possible to influence the control behavior in the manner described if the regulating device does not have such an interface or the construction of the regulating device is not known and it is therefore not possible to compensate for unwanted control behavior in a manner that depends on the driving situation. Thus, loading integrating components in the steering angle regulation can then, for example, continue to cause unwanted vehicle behavior.
As such, it is desirable to present a regulating device which makes it possible to influence the regulating behavior of the steering angle regulation even if no interface with such influencing is provided.
According to a first aspect, the disclosure present a regulating device for regulating the steering angle of a vehicle. The regulating device includes a first controller unit, the regulating behavior of which has at least one integrating component. The first controller unit is configured to receive the control difference between the first steering angle information, which is deduced from nominal steering angle information, and the actual steering angle and to provide actuation information for a motor operating the steering. The nominal steering angle information can be provided by a driving assistance system, for example, which makes it possible to control the vehicle autonomously or partially autonomously.
In addition, a compensation control circuit superposed on the first controller unit is provided. The compensation control circuit has a feedback path which receives actuation information of the motor, the output torque of the motor and/or information dependent on the output torque of the motor as the input variable and, based on said input variable, provides steering angle compensation information. Based on the steering angle compensation information, an adjustment of the nominal steering angle information is effected and therefore the first steering angle information is formed. In particular, a subtraction point is provided, which receives the nominal steering angle information and the steering angle compensation information and outputs the first steering angle information as a subtraction result. The control behavior of the compensation control circuit can be modified depending on at least one control variable, wherein the control variable is an influence quantity of the human driver on the steering device and/or a driving situation-dependent measured variable. An influence quantity of the human driver can be the torque which the driver applies to the steering wheel of the vehicle. The driving situation-dependent measured variable can be the curvature of the bend for example, i.e., the reciprocal of the bend radius, or the vehicle speed.
The technical advantage of the method described herein is that regulating compensation can be achieved by the superposed compensation control circuit based on available information, which regulating compensation makes it possible to improve the regulating behavior and in particular avoids oscillations and reduces disturbing influences of the integrating regulating component.
According to an exemplary embodiment, the first controller unit is a PID controller or the first controller unit has a PID controller. The control behavior of a PID controller has an advantageous regulating behavior for the steering angle regulation.
According to an exemplary embodiment, the first controller unit is a self-contained controller unit which does not have an external interface via which the control behavior of the first controller unit can be adjusted. In other words, the first controller unit forms a so-called black box, the control behavior of which cannot be adjusted externally so that a situation-dependent change in the control behavior would be possible. However, the compensation control circuit superposed on the first controller unit as a subordinate controller unit makes it possible to compensate for the absence of such an interface by an external control loop.
According to an exemplary embodiment, the first controller unit provides nominal torque information as actuation information of the motor. The first controller unit receives the control difference between the first steering angle information and the actual steering angle as input information and converts this into nominal torque information, based on which the motor is actuated. The motor contains a motor regulation which converts the nominal torque information into a motor torque.
According to an exemplary embodiment, the input variable of the feedback path of the compensation control circuit is nominal torque information of the first controller unit, the current intensity of the electrical torque-forming current flowing through the motor or measurement information proportional to said current intensity, for example the voltage drop over a resistor flowed through by the motor current or the electrical moment. These input variables are also available in self-contained controller units, since they are either the input information or the output information of the first controller unit, i.e., measurement signals which can be captured at the input or output interfaces of the first controller unit, or measurement signals which are available at the electric motor of the steering system.
According to an exemplary embodiment, the compensation control circuit, in particular the feedback path of this compensation control circuit, has a first control element which is configured as a threshold-dependent dead zone. As a result, an input variable threshold can be adjusted, above and/or below which the compensation control circuit is effective.
According to an exemplary embodiment, the first control element is configured to output an output variable having the value 0, if the input variable thereof, in particular the input variable of the feedback path of the compensation control circuit, lies below an input variable threshold. As a result, it is possible to deactivate the compensation control circuit for low input variables.
According to an exemplary embodiment, the threshold of the dead zone, i.e., the input variable threshold, can be modified depending on the at least one control variable. As a result, the activation threshold of the compensation control circuit can be adjusted in a manner that depends on the driving situation or driving conditions.
According to an exemplary embodiment, the regulating device is configured to calculate the threshold of the dead zone based on a first mathematical function depending on the at least one control variable. As a result, the effect of the control variable on the threshold of the dead zone can be adjusted. The first mathematical function can be a monotonically nondecreasing or a monotonically nonincreasing function, for example. In the event that multiple control variables are used, the first mathematical function can be configured to calculate the threshold based on multiple control variables as the input variables.
According to an exemplary embodiment, the compensation control circuit, in particular the feedback path of the compensation control circuit, has a second control element which is configured as a low-pass filter or has a low-pass behavior. As a result, high-frequency components of the input variable of the feedback path can be filtered out so that oscillations can be avoided and the low-frequency components, i.e., the slowly changing components of the input variable, which originate from the integrating regulating part, are taken greater account of during the compensation.
According to an exemplary embodiment, the second control element is a PT1 element or a PT element of a higher order or has such a PT1 element or PT element of a higher order.
According to an exemplary embodiment, the control behavior of the second control element can be modified depending on the at least one control variable. As a result, the control behavior of the compensation control circuit can be adjusted in a manner that depends on the driving situation or driving conditions.
According to an exemplary embodiment, the regulating device is configured to calculate the control behavior of the second control element based on a second mathematical function depending on the at least one control variable. As a result, the effect of the control variable on the control behavior of the second control element can be adjusted. The second mathematical function can be a monotonically nondecreasing or monotonically nonincreasing function, for example. In the event that multiple control variables are used, the second mathematical function can be configured to carry out a calculation of an output variable influencing the control behavior of the second control element based on multiple control variables as the input variables.
According to an exemplary embodiment, the compensation control circuit, in particular the feedback path of the compensation control circuit, has a third control element which is configured as a limiter. As a result, a limiting of the effect of the compensation control circuit, in particular a limiting of the output signal of the feedback path of the compensation control circuit, can be achieved in order to avoid too high a back-coupling effect for safety reasons.
According to an exemplary embodiment, the limiter has a threshold as of which the amplitude of the output signal is limited. The threshold can be modified depending on the at least one control variable. As a result, the threshold of the limiter can be adjusted in a manner that depends on the driving situation or driving conditions.
According to an exemplary embodiment, the regulating device is configured to calculate the threshold of the third control element based on a third mathematical function depending on the at least one control variable. As a result, the effect of the control variable on the threshold of the limiter can be adjusted. The third mathematical function can be a monotonically nondecreasing or monotonically nonincreasing function, for example. In the event that multiple control variables are used, the third mathematical function can be configured to calculate the threshold based on multiple control variables as the input variables.
According to a further aspect, the disclosure presents a method for regulating the steering angle of a vehicle by means of a regulating device. The regulating device comprises a first controller unit, the regulating behavior of which has at least one integrating component. The first controller unit receives the control difference between the first steering angle information, which is deduced from nominal steering angle information, and an actual steering angle and provides actuation information for a motor operating the steering. In addition, a compensation control circuit superposed on the first controller unit is provided, the feedback path of which receives actuation information of the motor, the output torque of the motor or information dependent on the output torque of the motor as the input variable and, based on said input variable, provides steering angle compensation information. Based on the steering angle compensation information, the nominal steering angle information is adjusted and the first steering angle information is formed. In particular, the first steering angle information is produced by subtracting the steering angle compensation information from the nominal steering angle information provided by the driving assistance system. The control behavior of the compensation control circuit is modified depending on at least one control variable, wherein the control variable is an influence quantity of the human driver on the steering device and/or a driving situation-dependent measured variable.
The term “superposed control circuit” is understood to be a control circuit which influences the control variable of a subordinate controlled system, i.e., a lower regulating structure viewed in terms of hierarchy. The superposed control circuit can use a signal or information from the subordinate controlled system in order to influence the control behavior of the subordinate controlled system as a result.
Within the meaning of the invention, the expressions “approximately”, “substantially” or “roughly” mean deviations from the exact value in each case by +/−10%, preferably by +/−5% and/or deviations in the form of changes which are insignificant to the function.
Further developments, advantages and possible applications are set out by the following description of exemplary embodiments and by the figures. All of the features described and/or pictured per se or in any combination are fundamentally the subject-matter of the disclosure, independently of their combination in the claims or references back thereto. The content of the claims is also made an integral part of the description.
The disclosed subject matter is explained in greater detail below on the basis of the figures with reference to exemplary embodiments, wherein:
In the block wiring diagram, the block designated with the number 2 represents the steering angle controller, the block designated with the number 3 represents the motor and the block designated with the reference numeral 5 represents a control engineering reproduction of the steering mechanics. Together with the motor 3, the steering mechanics form the electromechanical steering device EPS.
The control circuit obtains, for example, the nominal steering angle φsoll which is provided for example by an electronic control unit, in particular a computer unit controlling an autonomous or partially autonomous driving function, as input information. The term “nominal steering angle information” is also used here for the nominal steering angle φsoll.
Following the subtraction point of the control circuit, at which the nominal steering angle φsoll is amended based on the actual steering angle φ, a first controller unit 2 is provided, which provides for example a nominal actuating torque Tsoll. The first controller unit 2 is for example a PID controller, as depicted by way of example in
The first controller unit 2 is for example a self-contained or enclosed controller unit which does not make possible an interface for supplying external control signals, via which the control behavior could be influenced in a manner that depends on the driving conditions and/or the situation, in particular depending on the driving commands of the human driver. Consequently, it is not possible to compensate for the disturbing control behavior arising inter alia from the integrating component directly at the first controller unit 2.
The output side of the first control unit 2 is coupled to the motor 3. This is in particular an electric actuator which provides the steering forces for the mechanical steering system of the vehicle. The motor 3 receives a nominal actuating torque Tsoll, which is converted by the motor 3 into a motor steering torque TEPS, from the first control unit 2 for example. The steering torque TEPS is the actual torque that is transferred by the motor 3 to the steering. The steering torque TEPS can either be measured directly or can be determined indirectly via the current intensity of the current which flows through the motor 3, since a direct or substantially direct proportionality exists between the current intensity and the steering torque TEPS produced by the motor.
In
The disturbance variable dL can be any external disturbance variable (rut, road gradient, transverse forces due to cornering, additional moments which are generated by the motor due to steering assistance functions of the EPS, etc.) and/or the steering torque applied to the steering wheel by the human driver via a steering movement.
The output variable of the control circuit is the actual steering angle φ, which is fed back to the point of difference lying before the input of the first controller unit 2.
The disturbance variable dL is compensated for by the integrating component in the steering angle regulation. This leads to the integrating component being built up. Based on the assumed IT1 structure, the following is produced for the motor steering torque TEPS:
TEPS=j{umlaut over (φ)}+d{dot over (φ)}+dL. (Formula 1)
It is obvious from formula 1 that the disturbance variable dL leading to the buildup of the integrating component is also reflected in the steering torque TEPS produced by the motor. I.e., the feedback of the steering torque TEPS produced by the motor is suitable for compensating for the buildup of the integrating component in the first controller unit 2.
Alternatively, it is also possible to use the nominal actuating torque Tsoll, instead of or in addition to the steering torque TEPS produced by the motor, as the variable to be fed back, since the nominal actuating torque Tsoll also contains information about the integrating component which is building up. This is in particular advantageous if no information regarding the current steering torque TEPS produced by the motor is available, at least temporarily.
The following transfer function is thus produced for the control circuit according to
φ/φsoll=Ds2+Ps+1/Js3+(d+D)s2+Ps+1; (Formula 2)
In the exemplary embodiment shown, the steering torque TEPS produced by the motor is supplied to the feedback path 4 of the compensation control circuit as the input variable. Alternatively, as explained above, the nominal actuating torque Tsoll can also be used as the input variable. The feedback path of the compensation control circuit provides steering angle compensation information as the output variable. Said information is supplied to a subtraction point, so that the first steering angle information φ′soll, also referred to as compensated nominal steering angle information, arise from the nominal steering angle information φsoll by subtracting the steering angle compensation information. This first steering angle information φ′soll should then in turn serve as input information for the control circuit of the steering device EPS.
The feedback path 4 of the compensation control circuit can contain one or more control elements, by means of which different regulating functions are executed. It is understood that even more complex regulating structures can be used, which illustrate the functionality of multiple control elements in a physical controller.
In the exemplary embodiment shown, three control elements 4.1, 4.2, 4.3 are provided. It is understood that this purely serves as one example and more or fewer regulating elements can also be provided.
The first control element 4.1 is for example configured as a dead zone, i.e., an output signal deviating from zero is not output until the input signal of the first control element 4.1 has exceeded or fallen below a threshold. After exceeding the threshold, there can be a linear relationship between the input information and the output information. The threshold as of which the compensation control circuit should become active can therefore be specified by the first control element 4.1.
The threshold of the first control element 4.1 can be modifiable, and indeed preferably depending on one or more control variables s.
The at least one control variable s can either be transferred directly to the first control element 4.1 as the input variable or can be converted into control information which is dependent on the control variable s via a first mathematical function f1(s), which control information is then transferred to the first control element 4.1 in order to modify the threshold.
The feedback path 4 of the compensation control circuit can have a further, second control element 4.2 which preferably receives the output information of the first control element 4.1 as input information. The second control element 4.2 has a transfer function GT which has low-pass behavior for example. The second control element 4.2 can be configured for example as a PT1 element or as a PTx element of a higher order (i.e., x∈{2, 3, 4, . . . }). Other regulating functions with low-pass behavior are also fundamentally conceivable. Components above a cutoff frequency are filtered out by the low-pass behavior. As a result, low-frequency components, i.e., slow changes in the steering angle come into play to a greater extent so that the cause for the growing nominal actuating torques resulting from the integrating component is therefore back-coupled and, as a result, a more natural steering behavior is achieved. Alternatively, other transfer functions for example can also be used, for example those that arise from standard design methods such as e.g., pole-zero compensation, state controller, etc.
The control behavior of the second control element 4.2 can be modifiable, and indeed preferably in turn depending on one or more control variables s.
The at least one control variable s can either be transferred directly to the second control element 4.2 as the input variable or can be converted into control information which is dependent on the control variable s via a second mathematical function f2(s), which control information is then transferred to the second control element 4.2 in order to modify the control properties.
The feedback path 4 of the compensation control circuit can have a further, third control element 4.3 which preferably receives the output information of the second control element 4.2 as input information. The third control element 4.3 can for example be configured as a limiter, also referred to as a saturation element. The limiter preferably serves to restrict the amplitude of the feedback information (in particular the output signal of the second control element 4.2) in order to avoid feedback values which are too high for safety reasons.
The third control element 4.3 preferably has a threshold as of which the amplitude is limited. This threshold can be modifiable, and indeed preferably depending on one or more control variables s.
The at least one control variable s can either be transferred directly to the third control element 4.1 as the input variable or can be converted into control information which is dependent on the control variable s via a third mathematical function f3(s), which control information is then transferred to the third control element 4.3 in order to modify the threshold.
One or more monotonically nondecreasing or nonincreasing functions can be used as the first to third mathematical functions f1(s) to f3(s), which functions influence the influence of the at least one control variable s on the respective control element 4.1 to 4.3. Deviating from the monotonically nondecreasing or nonincreasing functions indicated, other types of functions can also be used, for example quadratic functions.
In the event that multiple different control variables s are used, the mathematical functions f1(s) to f3(s) can also have multiple functional parts, wherein one control variable s is used in each case as the input variable for a functional part and, as a result, the overall result of the respective mathematical function f1(s) to f3(s) can be influenced by multiple control variables.
One or more of the items of information indicated below can be used as the control variable s:
The disclosed subject matter has been described above with reference to exemplary embodiments. It is understood that numerous amendments and variations are possible, without departing from the scope of protection defined by the claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2021 201 141.1 | Feb 2021 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
5105899 | Mori | Apr 1992 | A |
5228757 | Ito | Jul 1993 | A |
5343393 | Hirano | Aug 1994 | A |
5506776 | Fushimi | Apr 1996 | A |
5508921 | Chikuma | Apr 1996 | A |
5524079 | Ishida | Jun 1996 | A |
5606502 | Adachi | Feb 1997 | A |
5627754 | Asanuma | May 1997 | A |
5652379 | Fukatani | Jul 1997 | A |
5720533 | Pastor | Feb 1998 | A |
5745862 | Hirano | Apr 1998 | A |
5816669 | Hiwatashi | Oct 1998 | A |
6035251 | Hac | Mar 2000 | A |
6056371 | Lin | May 2000 | A |
6079800 | Lin | Jun 2000 | A |
6131688 | Fukada | Oct 2000 | A |
6175790 | Lin | Jan 2001 | B1 |
6205374 | Kljima | Mar 2001 | B1 |
6233513 | Furukawa | May 2001 | B1 |
6280008 | Yoshida | Aug 2001 | B1 |
6334656 | Furukawa | Jan 2002 | B1 |
6345218 | Yamanaka | Feb 2002 | B1 |
6560524 | Lin | May 2003 | B2 |
7092805 | Kasahara | Aug 2006 | B2 |
8010253 | Lundquist | Aug 2011 | B2 |
8024091 | Takenaka | Sep 2011 | B2 |
8027775 | Takenaka | Sep 2011 | B2 |
8050822 | Takenaka | Nov 2011 | B2 |
8086383 | Takenaka | Dec 2011 | B2 |
8155852 | Takenaka | Apr 2012 | B2 |
9446792 | Takeda | Sep 2016 | B2 |
20030060959 | Lin | Mar 2003 | A1 |
20040026158 | Rieth | Feb 2004 | A1 |
20060080016 | Kasahara | Apr 2006 | A1 |
20080021614 | Endo | Jan 2008 | A1 |
20090012669 | Takenaka | Jan 2009 | A1 |
20090024280 | Kato | Jan 2009 | A1 |
20090024281 | Hwang | Jan 2009 | A1 |
20090026003 | Kato | Jan 2009 | A1 |
20090118905 | Takenaka | May 2009 | A1 |
20090132137 | Takenaka | May 2009 | A1 |
20090171526 | Takenaka | Jul 2009 | A1 |
20090187302 | Takenaka | Jul 2009 | A1 |
20090319114 | Takenaka | Dec 2009 | A1 |
20100094505 | Kariatsumari | Apr 2010 | A1 |
20120046836 | Strecker | Feb 2012 | A1 |
20120072074 | Greul | Mar 2012 | A1 |
20140343794 | Tamaizumi | Nov 2014 | A1 |
20140350789 | Anker | Nov 2014 | A1 |
20150057889 | Tamaizumi | Feb 2015 | A1 |
20150191199 | Tsubaki | Jul 2015 | A1 |
20160129934 | Akatsuka et al. | May 2016 | A1 |
20160176440 | Witte | Jun 2016 | A1 |
20160244092 | Matsuo | Aug 2016 | A1 |
20160355212 | Takaso | Dec 2016 | A1 |
20170113720 | Kodera | Apr 2017 | A1 |
20170137055 | Hirate | May 2017 | A1 |
20170267276 | Kodera | Sep 2017 | A1 |
20170282966 | Fukuda | Oct 2017 | A1 |
20180015945 | Kim | Jan 2018 | A1 |
20180015947 | Akatsuka | Jan 2018 | A1 |
20180201306 | Tsubaki | Jul 2018 | A1 |
20180354549 | Tsubaki | Dec 2018 | A1 |
20180362074 | Badiru | Dec 2018 | A1 |
20190054953 | Dreyer | Feb 2019 | A1 |
20190084613 | Tsubaki | Mar 2019 | A1 |
20190193782 | Tsubaki | Jun 2019 | A1 |
20190256133 | Tsubaki | Aug 2019 | A1 |
20190263391 | Matsunaga | Aug 2019 | A1 |
20190322311 | Aoki | Oct 2019 | A1 |
20190322313 | Münch | Oct 2019 | A1 |
20190337556 | Tsubaki | Nov 2019 | A1 |
20190359247 | Tsubaki | Nov 2019 | A1 |
20200180680 | Han | Jun 2020 | A1 |
20200283063 | Kashi | Sep 2020 | A1 |
20200398893 | Shoji et al. | Dec 2020 | A1 |
20210061344 | Kitazume | Mar 2021 | A1 |
20220144334 | Kakas | May 2022 | A1 |
20220250678 | Keßler | Aug 2022 | A1 |
20220250679 | Kakas | Aug 2022 | A1 |
20220306188 | Min | Sep 2022 | A1 |
Number | Date | Country |
---|---|---|
104583057 | Apr 2015 | CN |
111661149 | Sep 2020 | CN |
113696965 | Nov 2021 | CN |
19842439 | Mar 1999 | DE |
102005049042 | Apr 2006 | DE |
102012214847 | Mar 2014 | DE |
102014208785 | Nov 2015 | DE |
102014226781 | Jun 2016 | DE |
102016215724 | Feb 2018 | DE |
102018206089 | Oct 2019 | DE |
102019210509 | Jan 2021 | DE |
0718174 | Jun 1996 | EP |
1097855 | May 2001 | EP |
1880921 | Jan 2008 | EP |
2221235 | Aug 2010 | EP |
3712036 | Sep 2020 | EP |
H08175404 | Jul 1996 | JP |
2000198453 | Jul 2000 | JP |
2001177906 | Jun 2001 | JP |
3630278 | Mar 2005 | JP |
3647285 | May 2005 | JP |
2009051491 | Mar 2009 | JP |
2010208592 | Sep 2010 | JP |
2014227115 | Dec 2014 | JP |
2015020604 | Feb 2015 | JP |
2016088436 | May 2016 | JP |
2016147590 | Aug 2016 | JP |
2019025961 | Feb 2019 | JP |
2021000950 | Jan 2021 | JP |
WO-2009017199 | Feb 2009 | WO |
WO-2014162769 | Oct 2014 | WO |
WO-2019026351 | Feb 2019 | WO |
WO-2020178242 | Sep 2020 | WO |
WO-2020178243 | Sep 2020 | WO |
Entry |
---|
“Comparison of Feedback Control Techniques for Torque-Vectoring Control of Fully Electric Vehicles;” De Novellis et al.; IEEE Transactions on Vehicular Technology (vol. 63, Issue: 8, pp. 3612-3623); Oct. 31, 2014. (Year: 2014). |
“Integration of optimal maneuver prediction in active safety control systems: considerations on driving safety improvements;” Biral et al., 2010 IEEE International Conference on Control Applications (pp. 173-178); Sep. 1, 2010. (Year: 2010). |
“The development of vehicle stability control at Ford;” Tseng et al.; IEEE/ASME Transactions on Mechatronics (vol. 4, Issue: 3, pp. 223-234); Sep. 1, 1999. (Year: 1999). |
“Research of Automotive Steer-by-Wire Control Based on Integral Partition PID Control;” Fu et al.; 2009 Third International Conference on Genetic and Evolutionary Computing (pp. 561-564); Mar. 12, 2010. (Year: 2010). |
German Search Report dated Aug. 12, 2021 for the counterpart German Patent Application No. 10 2021 201 141.1. |
Search Report dated Oct. 7, 2022 from corresponding Japanese patent application No. 2021-197883. |
Office Action dated Dec. 12, 2022 from corresponding Japanese patent application No. 2021-197883. |
Number | Date | Country | |
---|---|---|---|
20220250678 A1 | Aug 2022 | US |