The present invention relates to an adjusting device for the height adjustment of a side cheek of a seat, in particular a motor vehicle seat, and to a method for adjusting a side cheek of a seat.
Side cheeks can be arranged for example in a longitudinal direction on both sides of a seat area or a backrest of a seat and serve in particular to provide a person sitting on the seat, for example a driver of a motor vehicle, with better lateral support, in particular when travelling round a bend. Side cheeks of this type are very common particularly in so-called sports seats.
In order to provide a person sitting on the seat with adequate support, the side cheeks must be of a certain height. In a motor vehicle, this may lead to the side cheeks obstructing the person when getting into and out of the vehicle.
In order to overcome this problem, it is known for example from DE 199 50 702 A1 to alter the volume of the side cheeks by means of inflatable balloons arranged under the cover. However, this solution means a relatively high technical outlay particularly if the adjustment of the side cheek is to take place automatically, for example coupled to the opening of a door. Further problems which may arise with a pneumatic height adjustment of a side cheek are the noises associated with the inflation of the balloon, a possible loss of pressure in the balloon and a possibly non-optimal adaptation of the cover to the balloon, which may lead to creases in the cover.
The object of the present invention is therefore to provide an improved adjusting device for a side cheek. In particular, it is an object to provide an adjusting device for a side cheek which is simple to realise and can be controlled in a simple manner.
This object is achieved according to the invention by an adjusting device according to Claim 1 and a method according to Claim 17. The dependent claims define preferred or advantageous exemplary embodiments of the invention.
An adjusting device according to the invention for the height adjustment of a side cheek of a seat comprises an adjusting mechanism which is to be coupled to a movable component of the side cheek and is configured in such a way that, on actuation of the adjusting mechanism, a pulling force is exerted on the movable component of the side cheek by the adjusting mechanism in order to alter a height of the side cheek relative to a surface of the seat. The adjusting device thus enables, by exerting a pulling force on the component of the side cheek coupled to it, the side cheek to be pulled towards the respective seat surface or backrest surface in order to thereby reduce the height of the side cheek by which the latter protrudes from the seat surface or backrest surface.
The adjusting mechanism preferably comprises an adjusting element which in use is to be coupled to the movable component of the side cheek, and guide means which define a path along which the adjusting element can be moved on the guide means. To define the path along which the adjusting element can be moved, the guide means can comprise a guide opening which is provided on a guide link or a guide projection which is provided on a guide link and with which a guide projection provided on the adjusting element or a guide opening provided on the adjusting element engages respectively, so that the adjusting element is mounted displaceably on the guide link, its path being defined by the shape of the guide opening. This configuration makes it possible to adjust the side cheek of the seat according to a curve which may also have a more complicated shape.
In a preferred exemplary embodiment, at least one section of the guide opening is curved, while another section is substantially straight. This configuration of the guide opening enables the adjustment of the side cheek according to a curve which, starting from an extended position of the side cheek, runs first outwards with respect to a seat area and then substantially perpendicular to the surface of the seat, so that the side cheek is first pivoted laterally and then moved perpendicular to the seat surface.
The adjusting element can be moved along the guide means with the aid of various actuating devices, for example by a toothed rack coupled to a pinion. In a preferred exemplary embodiment, the adjusting mechanism comprises a Bowden control arrangement in order, by actuation of the Bowden control arrangement, to pull the movable component of the side cheek towards a seat area or away from the seat area in order to alter the height of the side cheek. In particular, a cable of the Bowden control arrangement can be guided via the guide link and coupled to the adjusting element. By using a Bowden control arrangement, it is possible to accommodate an actuating device, for example an electric motor, at a suitable location on or in the seat, even if this location is spatially remote from the position of the adjusting mechanism.
When using a Bowden control arrangement, the adjusting mechanism can be configured in such a way that the side cheek can be both pulled downwards and moved upwards with the aid of the Bowden control, in order thus to variably adjust the height of the side cheek by actuation of a Bowden control or a plurality of Bowden controls.
Alternatively, it is possible for the cable control or Bowden control to act only in one direction, in which case, on actuation of the cable control or Bowden control, energy is absorbed by a mechanical energy storage means, preferably a compression spring, the energy storage means then bringing about or at least assisting, with release of the absorbed mechanical energy, the return movement of the side cheek in the opposite direction.
A seat according to the invention comprises a side cheek having a movable component, and an adjusting device according to an exemplary embodiment of the present invention which is coupled to the movable component. If the side cheek is provided on a seat area of the seat, the movable component is preferably mounted in articulated manner at its rear end. If the side cheek is arranged on a backrest of the seat, the movable component is preferably mounted in articulated manner at its lower end. The articulated mounting of the movable component enables the movable component and thus the side cheek to be adjusted according to a curve defined by the adjusting device.
A seat according to the invention preferably comprises two side cheeks which are arranged for example symmetrically on a seat area or on a backrest of the seat, and which each comprise a movable component which is respectively coupled to an adjusting device according to an exemplary embodiment of the present invention. For each of the adjusting devices, a separate actuating device, for example an electric motor, which is coupled to the Bowden control can be provided. In a preferred exemplary embodiment, the adjusting mechanisms of the adjusting devices are coupled to one another by a closed-circuit Bowden control system, so that they can be actuated by a single electric motor.
The side cheeks can be arranged on a seat area or on a backrest of the seat.
In a method according to the invention for the height adjustment of the side cheek of a seat, an adjusting mechanism coupled to a movable component of the side cheek exerts a pulling force on the movable component of the side cheek in order to alter a height of the side cheek by which the side cheek protrudes from a surface of the seat. The side cheek is preferably adjusted along a curve which, on a reduction of the height of the side cheek, comprises a curved section running outwards with respect to a surface of the seat and a further section oriented substantially perpendicular to the surface of the seat.
The adjusting device according to the invention enables also an automated height adjustment of the side cheeks of a seat, in particular a motor vehicle seat, by simple means, it being possible for the height adjustment to be coupled for example to the actuation of the ignition of the particular motor vehicle, to the fastening of a safety belt and/or the opening of a door of the motor vehicle or other user actions, in order to adjust the height of the side cheeks automatically in such cases.
The present invention will be explained below in more detail with the aid of a preferred exemplary embodiment with reference to the appended drawing.
Illustrated in
As illustrated schematically in
Preferably, a component 7 coupled to the foam of the respective side cheek 6 is provided in each side cheek 6 of the seat, as illustrated by way of example in
The adjusting mechanism 4 further comprises a Bowden control 13, 14, the wire cable of the Bowden control being guided via the link 9. The wire cable of the Bowden control is also anchored to the adjusting element 11, so that the adjusting element 11 can be displaced on the link 9 via the wire cable of the Bowden control 13, 14.
If a force acting on the adjusting element is exerted downwards by the wire cable of the Bowden control 13, 14, the adjusting element 11 moves downwards, starting from its uppermost position illustrated in
The link 9 and the adjusting element 11 can have various configurations. In one exemplary embodiment, the link 9 is a single, suitably shaped plate, while the adjusting element 11 has the shape of an inverted U, the legs of which project laterally over the plate of the link 9, a plurality of guide projections 15, which connect the legs, engaging in the guide opening 10 of the link 9. The link 9 and the adjusting element 11 can however also have a more complicated configuration, as explained below.
With reference to
As can best be seen in
An adjustment of the adjusting element 11 along the link 9 with the aid of a Bowden control or a plurality of Bowden controls which couple the adjusting element to an actuating device, for example an electric motor, can be realised in various ways. For example, a first and a second cable pulley or cable roller can be provided which are both coupled to the same electric motor and are driven to rotate by the latter, an end of the wire cable 16 associated with the Bowden control section 13 being coupled to the first cable pulley and an end of the wire cable 16 associated with the Bowden control section 14 being coupled to the second cable pulley in such a way that, on rotation of the electric motor in a first direction of rotation, the section of the wire cable 16 associated with the Bowden control section 13 is lengthened and the section of the wire cable 16 associated with the Bowden control section 14 is shortened by the same amount, so that effectively the wire cable is displaced along the Bowden control. On rotation of the electric motor in a second direction of rotation opposite the first direction of rotation, the lower section of the wire cable 16 in
In alternative exemplary embodiments, the wire cable of the Bowden control can also be coupled to the adjusting element 11 in such a way that it can exert a force on the adjusting element 11 only in one direction, i.e. either upwards or downwards, while elastic energy storage means are provided which, on displacement of the adjusting element along the link, store mechanical energy and provide a restoring force for the adjusting element in the opposite direction. It is thus possible for example for a compression or tension spring to exert an upwardly directed force on the adjusting element 11, while the Bowden control is coupled to the adjusting element 11 in such a way that it can move the element downwards along the link 9. It is also possible for a compression or tension spring coupled to the adjusting element 11 to exert a downwardly directed force on the element, while the Bowden control is coupled to the adjusting element in such a way that it can move the element upwards along the link 9.
As will be explained now with reference to
As also illustrated schematically in
While in the adjusting device set out in detail above a Bowden control arrangement has been employed for displacing the adjusting element 11 on the guide link 9, alternatively any other suitable actuating device can be used for this purpose. Thus, for example, a toothed rack may be provided which is coupled to a pinion and is coupled to the adjusting element 11, in order to exert a pulling or pushing force on this element and displace it along the guide link 9.
As is evident from the above explanation of a preferred exemplary embodiment, the invention provides an adjusting device for a side cheek of a seat which is simple to realise, which can be automatically controlled in a simple manner and which enables a side cheek of a seat to be lowered or displaced upwards according to a predefined contour. The adjusting device according to the invention can be used in any seats, preferably in motor vehicle seats. In particular, the present invention can be employed in side cheeks arranged on a seat area or a backrest of a motor vehicle seat.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 016 474.9 | Apr 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/002982 | 3/31/2006 | WO | 00 | 4/18/2008 |