Vogel et al. Plant Journal 13(5):673-683, 1998.* |
Goddijn, O.J.M. et al. “Transgenic Tobacco Plants as a Model-System for the Production of Trehalose” Plant Physiology, vol. 108, No.. 2(Jun. 1, 1995), p. 149. |
Jang, J. C. et al. “Sugar Sensing in Higher Plants” Plant Cell, vol. 6 (Nov. 19940, pp. 1665-1679. |
Lu, X. et al. “Differentiation of HT-29 Human Colonic Adenocarcinoma Cells Correlates with Increased Expression of Mitochondrial RNA: Effects of Trehalose on Cell Growth and Maturation.” Cancer Research, vol. 52 (Jul. 1992), pp. 3718-3725. |
Holmstrom, K.O. et al. “Drought tolerance in plants” Nature, vol. 379 (Feb. 22, 1996), pp. 683-684. |
Blazguez, M. A. et al. “Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases” Febs Letters, vol. 329, No. 1, 2 (1993), pp. 51-54. |
Hohmann, S. et al. “Evidence for trehalose-6-phosphate -dependent and -independent mechanisms in the control of sugar influx into yeast glycolysis.” Molecular Microbiology 20 (5) (1996), pp. 981-991. |
Luyten, K. “Functional Analysis of the Yeast Genes GGS1/TPS1, Encoding a Subunit of the Trehalose Synthase Complex, and FPS1, Encoding a Glycerol Facilitator (Saccharomyces Cerevisiae)” Dissertation Abstracts International, vol. 58, No. 1C (1996), p. 105. Order No. AARC537180. Abstract. |
Kaasen, I. et al. “Analysis of the otsBA operon for osmoregulatory trehalose synthesis in Escherichia coli and homology of the OtsA and OtsB proteins to the yeast trehalose-6-phsphate synthase/phosphatase complex” Gene, vol. 145 (1994), pp. 9-15. |
Newman, T. et al. “15707 Arabidopsis thaliana cDNA clone 183N13T7” EMBL Sequence Database, Release 44 (Jul. 27, 1995) Accession No. H37578. |
Newman, T. et al. “6714 Arabidopsis thaliana cDNA clone 117M5T7” EMBL Sequence Database, Release 42 (Feb. 3, 1995) Accession No. T43451. |
Newman, T. et al. “15723 Arabidospis thaliana cDNA clone 183P18T7” EMBL Sequence Database, Release 44 (Jul. 27, 1995) Accession No. H37594. |
Newman, T. et al. “11536 Arabidopsis thaliana cDNA clone 151A11T7” EMBL Sequence Database, Release 43 (Mar. 25, 1995) Accession No. T76758. |
Newman, T. et al. “13527 Arabidopsis thaliana cDNA clone 170D15T7” EMBL Sequence Database, Release 44 (Jun. 4, 1995) Accession No. R65023. |
Newman, T. et al. “11168 Arabidopsis thaliana cDNA clone 149K12T7” EMBL Sequence Database, Release 44 (Jun. 4, 1995) Accession No. T76390. |
Minobe, Y. et al. “Rice cDNA, partial sequence (C10408-1A)” EMBL Sequence Database, Release 37 (Nov. 27, 1993) Accession No. D22143. |
Sasaki, T. et al. “Rice cDNA, partial sequence (S1776-1A)” EMBL Sequence Database, Release 41 (Nov. 13, 1994) Accession No. D40048. |
Minobe, Y. et al. “Rice cDNA, partial sequence (C10773-1A)” EMBL Sequence Database, Release 37 (Nov. 27, 1993) Accession No. D22344. |
Zentella, R. et al. “Molecular Characterization of a cDNA Encoding trehalose-6-Phosphate Lepidophylla Synthases/phosphatase from the resurrection plant selaginella” Plant Physiology, vol. 111, No. 2 (Jun. 1996), p. 47. |
Gancedo, C. et al. “A.thaliana mRNA for trehalose-6-phosphate synthase” EMBL Sequence Database, Release 51 (Mar. 1, 1997), Accession No. Y08568. |
Goddijn, O.J.M. et al. “Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants.” Plant Physiology (Rockville) 113 (1) (1997) pp. 181-190. |
Thevelein, J.M. “Trehalose synthase: guard to the gate of glycolysis in yeast?” Trends in Biochemical Sciences, vol. 20, No. 1 (Jan. 1995), pp. 3-10. |
De Virgillio, C. et al. “Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate phosphatase activity” Eur. J. Biochem., vol. 212 (1993), pp. 315-323. |
Foyer, C.H.et al. “Modifications in Carbon Assimilation, Carbon Partitioning and Total Biomass as a Result of Over-Expression of Sucrose Phosphates Synthase in Transgenic Tomato Plants” Plant Physiology, vol. 105, No. 1 (May 1, 1994), p. 23. |
Kossmann, J. et al. “Reduction of the Chloroplastic Fructose-1, 6-Bisphosphatase in Transgenic Potato Plants Impairs Photosynthesis and Plant Growth” Plant Journal, vol. 6, No. 5 (Nov. 1, 1994), pp. 637-650. |
Hajirezaei, M. et al. “Transgenic potato plants with strongly decreased expression of pyrophosphate: fructose-6-phosphate phosphotransferase show no visible phenotype and only minor changes in metabolic fluxes in their tubers.” Plant, vol. 192(1994),pp. 16-30. |
Trethewey, R. et al. “Transgenic approaches to improving the flux of carbohydrate into potato tubers.” International Conference on the Transport of Photoassimilates, Canterbury, England, UK, Aug. 13-17, 1995. Journal of Experimental Botany 47 (Spec. Issue) (1996). |