Regulation method of easy dyeing for patterning four-component chenille carpet pile

Information

  • Patent Application
  • 20230014704
  • Publication Number
    20230014704
  • Date Filed
    August 08, 2022
    a year ago
  • Date Published
    January 19, 2023
    a year ago
Abstract
The regulation method of easy dyeing for patterning a four-component chenille carpet pile combines raw filaments with different dyeing properties to prepare chenille yarns, and changes the combination modes and ratios of the raw filaments to prepare a four-component chenille carpet pile. The method realizes the heterochromaticity of the four-component pile through the uneven distribution of different dyes on the four-component raw filaments, and regulates the color difference of the four-component filaments after dyeing to form patterns with hazy, moderate and clear color mixing effects. The mixing of different colors dyed on the fibers in the four-component chenille carpet pile is spatial juxtaposition mixing, which forms a non-uniform and constant mixed color. According to the different mixing ratios of the color fibers and the interaction between the fiber hues, a composite color consisting of dominant and secondary hues is produced, thereby presenting a dynamic color.
Description
TECHNICAL FIELD

The present disclosure relates to a regulation method of easy dyeing for patterning a four-component chenille carpet pile, and belongs to the technical field of spinning chromatography.


BACKGROUND

A chenille carpet of a specific specification is fabricated by dyeing and after-finishing a tufted fabric formed by tufting a chenille yarn on a backing fabric, then gluing and fixing the tufted fabric to a carpet substrate, cutting, binding and sewing.


In the prior art, the chenille yarn is usually fabricated by spinning conventional low-stretch polyester filaments on a chenille spinning machine, the chenille yarn is tufted by a tufting loom to form a tufted fabric, and then the tufted fabric is subjected to high-temperature and high-pressure dyeing so as to dye the pile. After the dyeing, the tufted fabric is glued to the carpet substrate, and then the carpet substrate is cut, bound and sewn to form a chenille carpet of a specific specification.


The appearance color, feel and style of the chenille carpet depend on those of the chenille carpet pile. Therefore, the dyeing and after-finishing process of the pile is the key process for the fabrication of the chenille carpet. In the dyeing process, the pile is subjected to high-temperature disperse dyeing to achieve an expected color of the pile, and the pile is subjected to shrinkage and untwisting which are controlled through the high-temperature heat treatment to make the pile standing, full and soft.


The dyeing and after-finishing process of the chenille carpet requires a large amount of dyes, energy and water, and also discharges a large amount of sewage. In order to solve the problems of environmental pollution and energy consumption existing in the traditional dyeing process, it is urgent to realize waterless dyeing, precise toning and digital color blending of piles, so as to promote the rapid development of chenille carpets. In view of this, the following problems need to be solved.


1. In the prior art, the chenille pile is produced by a single raw material, and it cannot be patterned with hazy, moderate and clear color mixing effects by dyeing.


2. The color difference of multi-component fibers can be regulated by changing the mixing ratio of the multi-component fibers and the dyeing formula, so as to achieve the patterns with hazy, moderate and clear color mixing effects. However, there is no relevant report in the prior art.


SUMMARY

A technical problem to be solved by the present disclosure is to provide a regulation method of easy dyeing for patterning a four-component chenille carpet pile. The present disclosure combines raw filaments with different dyeing properties to prepare chenille yarns, and changes the combination modes and ratios of the raw filaments to prepare a four-component chenille carpet pile. The present disclosure realizes the heterochromaticity of the four-component pile through the uneven distribution of different dyes on the four-component raw filaments, and regulates the color difference of the four-component filaments after dyeing to form patterns with hazy, moderate and clear color mixing effects.


In order to solve the above technical problem, the present disclosure adopts the following technical solution: a regulation method of easy dyeing for patterning a four-component chenille carpet pile, including the following steps:


step A: providing four types of raw filaments α, β, γ, δ with equal linear densities and different dyeing properties; mixing the four types of raw filaments α, β, γ, δ to obtain multiple types of pile filaments with different combinations of specified numbers of raw filaments α, β, γ, δ, which form a four-component chenille carpet pile filament system; and proceeding to step B;


step B: dyeing, by four preset types of dyes that are respectively applicable to the raw filaments α, β, γ, δ with different dyeing properties and have different base colors, the multiple types of pile filaments with different combinations of specified numbers of raw filaments α, β, γ, δ, that is, dyeing the raw filaments α, β, γ, δ in the multiple types of pile filaments respectively; and proceeding to step C;


step C: calculating, based on red, green and blue (RGB) values (Rα, Gα, Bα), (Rβ, Gβ, Bβ), (Rγ, Gγ, Bγ) and (Rδ, Gδ, Bδ) of the dyed raw filaments α, β, γ, δ in the multiple types of pile filaments with different combinations of specified numbers of raw filaments α, β, γ, δ, RGB values of the multiple types of pile filaments with different combinations of specified numbers of raw filaments α, β, γ, δ, that is, calculating RGB values (Rξ, Gξ, Bξ) of a chenille carpet pile ξ corresponding to different combinations of specified numbers of raw filaments α, β, γ, δ; and proceeding to step D; and


step D: selecting combinations of four base colors with preset hue differences from preset base colors; dyeing, by the combinations of the four base colors, the raw filaments α, β, γ, δ in the multiple types of pile filaments respectively according to step B to obtain multiple types of mixed-color pile filaments with the preset hue differences; and constructing, based on the RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile ξ corresponding to different combinations of specified numbers of raw filaments α, β, γ, δ, preset types of chenille carpet piles by tufting the multiple types of mixed-color pile filaments with the preset hue differences.


In a preferred technical solution of the present disclosure, step A may include: providing four types of raw filaments α, β, γ, δ with equal linear densities and different dyeing properties, as shown in Table 1; and











TABLE 1









Numbers of raw filaments











4 filaments
6 filaments
8 filaments



















Combinations
α
β
γ
δ
α
β
γ
δ
α
β
γ
δ






















1
1/4
1/4
1/4
1/4
3/6
1/6
1/6
1/6
5/8
1/8
1/8
1/8


2




2/6
2/6
1/6
1/6
4/8
2/8
1/8
1/8


3




2/6
1/6
2/6
1/6
4/8
1/8
2/8
1/8


4




2/6
1/6
1/6
2/6
4/8
1/8
1/8
2/8


5




1/6
3/6
1/6
1/6
3/8
3/8
1/8
1/8


6




1/6
2/6
2/6
1/6
3/8
2/8
2/8
1/8


7




1/6
2/6
1/6
2/6
3/8
2/8
1/8
2/8


8




1/6
1/6
3/6
1/6
3/8
1/8
3/8
1/8


9




1/6
1/6
2/6
2/6
3/8
1/8
2/8
2/8


10




1/6
1/6
1/6
3/6
3/8
1/8
1/8
3/8


11








2/8
4/8
1/8
1/8


12








2/8
3/8
2/8
1/8


13








2/8
3/8
1/8
2/8


14








2/8
2/8
3/8
1/8


15








2/8
2/8
2/8
2/8


16








2/8
2/8
1/8
3/8


17








2/8
1/8
4/8
1/8


18








2/8
1/8
3/8
2/8


19








2/8
1/8
2/8
3/8


20








2/8
1/8
1/8
4/8


21








1/8
5/8
1/8
1/8


22








1/8
4/8
2/8
1/8


23








1/8
4/8
1/8
2/8


24








1/8
3/8
3/8
1/8


25








1/8
3/8
2/8
2/8


26








1/8
3/8
1/8
3/8


27








1/8
2/8
4/8
1/8


28








1/8
2/8
3/8
2/8


29








1/8
2/8
2/8
3/8


30








1/8
2/8
1/8
4/8


31








1/8
1/8
5/8
1/8


32








1/8
1/8
4/8
2/8


33








1/8
1/8
3/8
3/8


34








1/8
1/8
2/8
4/8


35








1/8
1/8
1/8
5/8









mixing the four types of raw filaments α, β, γ, δ to obtain pile filaments with different combinations of specified numbers of raw filaments α, β, γ, δ, which form a four-component chenille carpet pile filament system.


In a preferred technical solution of the present disclosure, step C may include: based on Table 2,










TABLE 2








RGB values after combination










Combinations
Rξ
Gξ
Bξ





1α + 1β + 1γ + 1δ






1
4

*

R
α


+


1
4

*

R
β


+


1
4

*

R
γ


+


1
4

*

R
δ












1
4

*

G
α


+


1
4

*

G
β


+


1
4

*

G
γ


+


1
4

*

G
δ












1
4

*

B
α


+


1
4

*

B
β


+


1
4

*

B
γ


+


1
4

*

B
δ















calculating RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile corresponding to different combinations of 4 raw filaments α, β, γ, δ.


In a preferred technical solution of the present disclosure, step C may include: based on Table 3,










TABLE 3








RGB values after combination










Combinations
Rξ
Gξ
Bξ





3α + 1β + 1γ + 1δ






3
6

*

R
𝔞


+


1
6

*

R
β


+


1
6

*

R
γ


+


1
6

*

R
δ












3
6

*

G
α


+


1
6

*

G
β


+


1
6

*

G
γ


+


1
6

*

G
δ












3
6

*

B
α


+


1
6

*

B
β


+


1
6

*

B
γ


+


1
6

*

B
δ











2α + 2β + 1γ + 1δ






2
6

*

R
α


+


2
6

*

R
β


+


1
6

*

R
γ


+


1
6

*

R
δ












2
6

*

G
α


+


2
6

*

G
β


+


1
6

*

G
γ


+


1
6

*

G
δ












2
6

*

B
α


+


2
6

*

B
β


+


1
6

*

B
γ


+


1
6

*

B
δ











2α + 1β + 2γ + 1δ






2
6

*

R
α


+


1
6

*

R
β


+


2
6

*

R
γ


+


1
6

*

R
δ












2
6

*

G
α


+


1
6

*

G
β


+


2
6

*

G
γ


+


1
6

*

G
δ












2
6

*

B
α


+


1
6

*

B
β


+


2
6

*

B
γ


+


1
6

*

B
δ











2α + 1β + 1γ + 2δ






2
6

*

R
α


+


1
6

*

R
β


+


1
6

*

R
γ


+


2
6

*

R
δ












2
6

*

G
α


+


1
6

*

G
β


+


1
6

*

G
γ


+


2
6

*

G
δ












2
6

*

B
α


+


1
6

*

B
β


+


1
6

*

B
γ


+


2
6

*

B
δ











1α + 3β + 1γ + 1δ






1
6

*

R
α


+


3
6

*

R
β


+


1
6

*

R
γ


+


1
6

*

R
δ












1
6

*

G
α


+


3
6

*

G
β


+


1
6

*

G
γ


+


1
6

*

G
δ












1
6

*

B
α


+


3
6

*

B
β


+


1
6

*

B
γ


+


1
6

*

B
δ











1α + 2β + 2γ + 1δ






1
6

*

R
α


+


2
6

*

R
β


+


2
6

*

R
γ


+


1
6

*

R
δ












1
6

*

G
α


+


2
6

*

G
β


+


2
6

*

G
γ


+


1
6

*

G
δ












1
6

*

B
α


+


2
6

*

B
β


+


2
6

*

B
γ


+


1
6

*

B
δ











1α + 2β + 1γ + 2δ






1
6

*

R
α


+


2
6

*

R
β


+


1
6

*

R
γ


+


2
6

*

R
δ












1
6

*

G
α


+


2
6

*

G
β


+


1
6

*

G
γ


+


2
6

*

G
δ












1
6

*

B
α


+


2
6

*

B
β


+


1
6

*

B
γ


+


2
6

*

B
δ











1α + 1β + 3γ + 1δ






1
6

*

R
α


+


1
6

*

R
β


+


3
6

*

R
γ


+


1
6

*

R
δ












1
6

*

G
α


+


1
6

*

G
β


+


3
6

*

G
γ


+


1
6

*

G
δ












1
6

*

B
α


+


1
6

*

B
β


+


3
6

*

B
γ


+


1
6

*

B
δ











1α + 1β + 2γ + 2δ






1
6

*

R
α


+


1
6

*

R
β


+


2
6

*

R
γ


+


2
6

*

R
δ












1
6

*

G
α


+


1
6

*

G
β


+


2
6

*

G
Y


+


2
6

*

G
δ












1
6

*

B
α


+


1
6

*

B
β


+


2
6

*

B
Y


+


2
6

*

B
δ











1α + 1β + 1γ + 3δ






1
6

*

R
α


+


1
6

*

R
β


+


1
6

*

R
γ


+


3
6

*

R
δ












1
6

*

G
α


+


1
6

*

G
β


+


1
6

*

G
γ


+


3
6

*

G
δ












1
6

*

B
α


+


1
6

*

B
β


+


1
6

*

B
γ


+


3
6

*

B
δ















calculating RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile ξ corresponding to different combinations of 6 raw filaments α, β, γ, δ.


In a preferred technical solution of the present disclosure, step C may include: based on Table 4,










TABLE 4








RGB values after combination










Combinations
Rξ
Gξ
Bξ





5α + 1β + 1γ + 1δ






5
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












5
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












5
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











4α + 2β + 1γ + 1δ






4
8

*

R
α


+


2
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












4
8

*

G
α


+


2
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












4
8

*

B
α


+


2
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











4α + 1β + 2γ + 1δ






4
8

*

R
α


+


1
8

*

R
β


+


2
8

*

R
γ


+


1
8

*

R
δ












4
8

*

G
α


+


1
8

*

G
β


+


2
8

*

G
γ


+


1
8

*

G
δ












4
8

*

B
α


+


1
8

*

B
β


+


2
8

*

B
γ


+


1
8

*

B
δ











4α + 1β + 1γ + 2δ






4
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


2
8

*

R
δ












4
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


2
8

*

G
δ












4
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


2
8

*

B
δ











3α + 3β + 1γ + 1δ






3
8

*

R
α


+


3
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












3
8

*

G
α


+


3
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












3
8

*

B
α


+


3
8

*

B
β


+


1
8

*

B
γ


+


1
8

*










3α + 2β + 2γ + 1δ






3
8

*

R
α


+


2
8

*

R
β


+


2
8

*

R
γ


+


1
8

*

R
δ












3
8

*

G
α


+


2
8

*

G
β


+


2
8

*

G
γ


+


1
8

*

G
δ












3
8

*

B
α


+


2
8

*

B
β


+


2
8

*

B
γ


+


1
8

*

B
δ











3α + 2β + 1γ + 2δ






3
8

*

R
α


+


2
8

*

R
β


+


1
8

*

R
γ


+


2
8

*

R
δ












3
8

*

G
α


+


2
8

*

G
β


+


1
8

*

G
γ


+


2
8

*

G
δ












3
8

*

B
α


+


2
8

*

B
β


+


1
8

*

B
γ


+


2
8

*

B
δ











3α + 1β + 3γ + 1δ






3
8

*

R
α


+


1
8

*

R
β


+


3
8

*

R
γ


+


1
8

*

R
δ












3
8

*

G
α


+


1
8

*

G
β


+


3
8

*

G
γ


+


1
8

*

G
δ












3
8

*

B
α


+


1
8

*

B
β


+


3
8

*

B
γ


+


1
8

*

B
δ











3α + 1β + 2γ + 2δ






3
8

*

R
α


+


1
8

*

R
β


+


2
8

*

R
γ


+


2
8

*

R
δ












3
8

*

G
α


+


1
8

*

G
β


+


2
8

*

G
Y


+


2
8

*

G
δ












3
8

*

B
α


+


1
8

*

B
β


+


2
8

*

B
γ


+


2
8

*

B
δ











3α + 1β + 1γ + 3δ






3
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


3
8

*

R
δ












3
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


3
8

*

G
δ












3
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


3
8

*

B
δ











2α + 4β + 1γ + 1δ






2
8

*

R
α


+


4
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












2
8

*

G
α


+


4
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












2
8

*

B
α


+


4
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











2α + 3β + 2γ + 1δ






2
8

*

R
α


+


3
8

*

R
β


+


2
8

*

R
γ


+


1
8

*

R
δ












2
8

*

G
α


+


3
8

*

G
β


+


2
8

*

G
γ


+


1
8

*

G
δ












2
8

*

B
α


+


3
8

*

B
β


+


2
8

*

B
γ


+


1
8

*

B
δ











2α + 3β + 1γ + 2δ






2
8

*

R
α


+


3
8

*

R
β


+


1
8

*

R
γ


+


2
8

*

R
δ












2
8

*

G
α


+


3
8

*

G
β


+


1
8

*

G
γ


+


2
8

*

G
δ












2
8

*

B
α


+


3
8

*

B
β


+


1
8

*

B
γ


+


2
8

*

B
δ











2α + 2β + 3γ + 1δ






2
8

*

R
α


+


2
8

*

R
β


+


3
8

*

R
γ


+


1
8

*

R
δ












2
8

*

G
α


+


2
8

*

G
β


+


3
8

*

G
γ


+


1
8

*

G
δ












2
8

*

B
α


+


2
8

*

B
β


+


3
8

*

B
γ


+


1
8

*

B
δ











2α + 2β + 2γ + 2δ






2
8

*

R
α


+


2
8

*

R
β


+


2
8

*

R
γ


+


2
8

*

R
δ












2
8

*

G
α


+


2
8

*

G
β


+


2
8

*

G
γ


+


2
8

*

G
δ












2
8

*

B
α


+


2
8

*

B
β


+


2
8

*

B
γ


+


2
8

*

B
δ











2α + 2β + 1γ + 3δ






2
8

*

R
α


+


2
8

*

R
β


+


1
8

*

R
γ


+


3
8

*

R
δ












2
8

*

G
α


+


2
8

*

G
β


+


1
8

*

G
γ


+


3
8

*

G
δ












2
8

*

B
α


+


2
8

*

B
β


+


1
8

*

B
γ


+


3
8

*

B
δ











2α + 1β + 4γ + 1δ






2
8

*

R
α


+


1
8

*

R
β


+


4
8

*

R
γ


+


1
8

*

R
δ












2
8

*

G
α


+


1
8

*

G
β


+


4
8

*

G
γ


+


1
8

*

G
δ












2
8

*

B
α


+


1
8

*

B
β


+


4
8

*

B
γ


+


1
8

*

B
δ











2α + 1β + 3γ + 2δ






2
8

*

R
α


+


1
8

*

R
β


+


3
8

*

R
γ


+


2
8

*

R
δ












2
8

*

G
α


+


1
8

*

G
β


+


3
8

*

G
γ


+


2
8

*

G
δ












2
8

*

B
α


+


1
8

*

B
β


+


3
8

*

B
γ


+


2
8

*

B
δ











2α + 1β + 2γ + 3δ






2
8

*

R
α


+


1
8

*

R
β


+


2
8

*

R
γ


+


3
8

*

R
δ












2
8

*

G
α


+


1
8

*

G
β


+


2
8

*

G
γ


+


3
8

*

G
δ












2
8

*

B
α


+


1
8

*

B
β


+


2
8

*

B
γ


+


3
8

*

B
δ











2α + 1β + 1γ + 4δ






2
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


4
8

*

R
δ












2
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


4
8

*

G
δ












2
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


4
8

*

B
δ











1α + 5β + 1γ + 1δ






1
8

*

R
α


+


5
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


5
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


5
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











1α + 4β + 2γ + 1δ






1
8

*

R
α


+


4
8

*

R
β


+


2
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


4
8

*

G
β


+


2
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


4
8

*

B
β


+


2
8

*

B
γ


+


1
8

*

B
δ











1α + 4β + 1γ + 2δ






1
8

*

R
α


+


4
8

*

R
β


+


1
8

*

R
γ


+


2
8

*

R
δ












1
8

*

G
α


+


4
8

*

G
β


+


1
8

*

G
γ


+


2
8

*

G
δ












1
8

*

B
α


+


4
8

*

B
β


+


1
8

*

B
γ


+


2
8

*

B
δ











1α + 3β + 3γ + 1δ






1
8

*

R
α


+


3
8

*

R
β


+


3
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


3
8

*

G
β


+


3
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


3
8

*

B
β


+


3
8

*

B
γ


+


1
8

*

B
δ











1α + 3β + 2γ + 2δ






1
8

*

R
α


+


3
8

*

R
β


+


2
8

*

R
γ


+


2
8

*

R
δ












1
8

*

G
α


+


3
8

*

G
β


+


2
8

*

G
γ


+


2
8

*

G
δ












1
8

*

B
α


+


3
8

*

B
β


+


2
8

*

B
γ


+


2
8

*

B
δ











1α + 3β + 1γ + 3δ






1
8

*

R
α


+


3
8

*

R
β


+


1
8

*

R
γ


+


3
8

*

R
δ












1
8

*

G
α


+


3
8

*

G
β


+


1
8

*

G
γ


+


3
8

*

G
δ












1
8

*

B
α


+


3
8

*

B
β


+


1
8

*

B
γ


+


3
8

*

B
δ











1α + 2β + 4γ + 1δ






1
8

*

R
α


+


2
8

*

R
β


+


4
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


2
8

*

G
β


+


4
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


2
8

*

B
β


+


4
8

*

B
γ


+


1
8

*

B
δ











1α + 2β + 3γ + 2δ






1
8

*

R
α


+


2
8

*

R
β


+


3
8

*

R
γ


+


2
8

*

R
δ












1
8

*

G
α


+


2
8

*

G
β


+


3
8

*

G
γ


+


2
8

*

G
δ












1
8

*

B
α


+


2
8

*

B
β


+


3
8

*

B
γ


+


2
8

*

B
δ











1α + 2β + 2γ + 3δ






1
8

*

R
α


+


2
8

*

R
β


+


2
8

*

R
γ


+


3
8

*

R
δ












1
8

*

G
α


+


2
8

*

G
β


+


2
8

*

G
γ


+


3
8

*

G
δ












1
8

*

B
α


+


2
8

*

B
β


+


2
8

*

B
γ


+


3
8

*

B
δ











1α + 2β + 1γ + 4δ






1
8

*

R
α


+


2
8

*

R
β


+


1
8

*

R
γ


+


4
8

*

R
δ












1
8

*

G
α


+


2
8

*

G
β


+


1
8

*

G
γ


+


4
8

*

G
δ












1
8

*

B
α


+


2
8

*

B
β


+


1
8

*

B
γ


+


4
8

*

B
δ











1α + 1β + 5γ + 1δ






1
8

*

R
α


+


1
8

*

R
β


+


5
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


5
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


5
8

*

B
γ


+


1
8

*

B
δ











1α + 1β + 4γ + 2δ






1
8

*

R
α


+


1
8

*

R
β


+


4
8

*

R
γ


+


2
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


4
8

*

G
γ


+


2
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


4
8

*

B
γ


+


2
8

*

B
δ











1α + 1β + 3γ + 3δ






1
8

*

R
α


+


1
8

*

R
β


+


3
8

*

R
γ


+


3
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


3
8

*

G
γ


+


3
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


3
8

*

B
γ


+


3
8

*

B
δ











1α + 1β + 2γ + 4δ






1
8

*

R
α


+


1
8

*

R
β


+


2
8

*

R
γ


+


4
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


2
8

*

G
γ


+


4
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


2
8

*

B
γ


+


4
8

*

B
δ











1α + 1β + 1γ + 5δ






1
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


5
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


5
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


5
8

*

B
δ















calculating RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile ξ corresponding to different combinations of 8 raw filaments α, β, γ, δ.


In a preferred technical solution of the present disclosure, step D may include: selecting combinations of four base colors with a hue difference of less than 60° from the preset base colors; dyeing, by the combinations of the four base colors, the raw filaments α, β, γ, δ in the multiple types of pile filaments respectively according to step B to obtain multiple types of mixed-color pile filaments with a hue difference of less than 60°; and constructing, based on the RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile ξ corresponding to different combinations of specified numbers of raw filaments α, β, γ, δ, a chenille carpet pile with a hazy color mixing effect by tufting the multiple types of mixed-color pile filaments with a hue difference of less than 60°.


In a preferred technical solution of the present disclosure, step D may include: selecting combinations of four base colors with a hue difference of greater than 60° and less than 120° from the preset base colors; dyeing, by the combinations of the four base colors, the raw filaments α, β, γ, δ in the multiple types of pile filaments respectively according to step B to obtain multiple types of mixed-color pile filaments with a hue difference of greater than 60° and less than 120°; and constructing, based on the RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile ξ corresponding to different combinations of specified numbers of raw filaments α, β, γ, δ, a chenille carpet pile with a moderate color mixing effect by tufting the multiple types of mixed-color pile filaments with a hue difference of greater than 60° and less than 120°.


In a preferred technical solution of the present disclosure, step D may include: selecting combinations of four base colors with a hue difference of greater than 120° and less than 180° from the preset base colors, and selecting combinations of three base colors with a hue difference of greater than 120° and less than 180° from the preset base colors to cooperate with white or black to form combinations of four base colors; dyeing, by the combinations of four base colors, the raw filaments α, β, γ, δ in the multiple types of pile filaments respectively according to step B to obtain multiple types of mixed-color pile filaments with a hue difference of greater than 120° and less than 180°; and constructing, based on the RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile ξ corresponding to different combinations of specified numbers of raw filaments α, β, γ, δ, a chenille carpet pile with a clear color mixing effect by tufting the multiple types of mixed-color pile filaments with a hue difference of greater than 120° and less than 180°.


Compared with the prior art, the above technical solutions of the present disclosure have the following technical effects:


The present disclosure combines raw filaments with different dyeing properties to prepare chenille yarns, and changes the combination modes and ratios of the raw filaments to prepare a four-component chenille carpet pile. The present disclosure realizes the heterochromaticity of the four-component pile through the uneven distribution of different dyes on the four-component raw filaments, and regulates the color difference of the four-component filaments after dyeing to form patterns with hazy, moderate and clear color mixing effects. Different from the additive mixing of color light and the subtractive mixing of pigments, the mixing of different colors dyed on the fibers in the four-component chenille carpet pile is spatial juxtaposition mixing, which forms a non-uniform and constant mixed color. According to the different mixing ratios of the color fibers and the interaction between the fiber hues, a composite color consisting of dominant and secondary hues are produced. The composite color will blend or separate with different viewing distance, angle, ambient light and other factors, resulting in a dynamic color. The entire design implementation of the present disclosure can effectively improve the efficiency of constructing the pattern of the chenille carpet pile.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a regulation method of easy dyeing for patterning a four-component chenille carpet pile according to the present disclosure.



FIG. 2 is a schematic diagram of 24 base colors.



FIG. 3 shows the practical application of the pattern construction of the chenille carpet pile with a gradient change in the hazy color mixing effect.



FIG. 4 shows the practical application of the pattern construction of the chenille carpet pile with a gradient change in the moderate color mixing effect.



FIG. 5 shows the practical application of the pattern construction of the chenille carpet pile with a gradient change in the clear color mixing effect.





DETAILED DESCRIPTION OF THE EMBODIMENTS

The specific implementation of the present disclosure will be further described in detail below with reference to the drawings.


The present disclosure proposes a regulation method of easy dyeing for patterning a four-component chenille carpet pile. In a practical application, as shown in FIG. 1, the method specifically includes Steps A to D.


Step A: Provide four types of raw filaments α, β, γ, δ with equal linear densities and different dyeing properties, for example, polyester filaments, cationically dyeable polyester filaments, polyamide filaments, cationically modified viscose filaments, viscose filaments, acrylic filaments and cationically dyeable acrylic filaments, as shown in Table 1:











TABLE 1









Numbers of raw filaments











4 filaments
6 filaments
8 filaments



















Combinations
α
β
γ
δ
α
β
γ
δ
α
β
γ
δ






















1
1/4
1/4
1/4
1/4
3/6
1/6
1/6
1/6
5/8
1/8
1/8
1/8


2




2/6
2/6
1/6
1/6
4/8
2/8
1/8
1/8


3




2/6
1/6
2/6
1/6
4/8
1/8
2/8
1/8


4




2/6
1/6
1/6
2/6
4/8
1/8
1/8
2/8


5




1/6
3/6
1/6
1/6
3/8
3/8
1/8
1/8


6




1/6
2/6
2/6
1/6
3/8
2/8
2/8
1/8


7




1/6
2/6
1/6
2/6
3/8
2/8
1/8
2/8


8




1/6
1/6
3/6
1/6
3/8
1/8
3/8
1/8


9




1/6
1/6
2/6
2/6
3/8
1/8
2/8
2/8


10




1/6
1/6
1/6
3/6
3/8
1/8
1/8
3/8


11








2/8
4/8
1/8
1/8


12








2/8
3/8
2/8
1/8


13








2/8
3/8
1/8
2/8


14








2/8
2/8
3/8
1/8


15








2/8
2/8
2/8
2/8


16








2/8
2/8
1/8
3/8


17








2/8
1/8
4/8
1/8


18








2/8
1/8
3/8
2/8


19








2/8
1/8
2/8
3/8


20








2/8
1/8
1/8
4/8


21








1/8
5/8
1/8
1/8


22








1/8
4/8
2/8
1/8


23








1/8
4/8
1/8
2/8


24








1/8
3/8
3/8
1/8


25








1/8
3/8
2/8
2/8


26








1/8
3/8
1/8
3/8


27








1/8
2/8
4/8
1/8


28








1/8
2/8
3/8
2/8


29








1/8
2/8
2/8
3/8


30








1/8
2/8
1/8
4/8


31








1/8
1/8
5/8
1/8


32








1/8
1/8
4/8
2/8


33








1/8
1/8
3/8
3/8


34








1/8
1/8
2/8
4/8


35








1/8
1/8
1/8
5/8









mix the four types of raw filaments α, β, γ, δ through gradient matching to obtain pile filaments with different combinations of specified numbers of raw filaments α, β, γ, δ, which form a four-component chenille carpet pile filament system; and proceed to Step B.


Step B. Select four base colors from 26 base colors including A1, A2, A3, . . . , A22, A23, A24, white (W) and black (K), where red, green and blue (RGB) values of A1, A2, A3, . . . , A22, A23, A24 (FIG. 2) are shown in Table 8:












TABLE 8







A1
A2
A3
A4


(255, 0, 0)
(255, 64, 0)
(255, 128, 0)
(255, 191, 0)


A5
A6
A7
A8


(255, 255, 0)
(191, 255, 0)
(128, 255, 0)
(64, 255, 0)


A9
A10
A11
A12


(0, 255, 0)
(0, 255, 64)
(0, 255, 128)
(0, 255, 191)


A13
A14
A15
A16


(0, 255, 255)
(0, 191, 255)
(0, 128, 255)
(0, 64, 255)


A17
A18
A19
A20


(0, 0, 255)
(64, 0, 255)
(128, 0, 255)
(191, 0, 255)


A21
A22
A23
A24


(255, 0, 255)
(255, 0, 191)
(255, 0, 128)
(255, 0, 64)









dye the pile filaments, by four types of dyes that are respectively applicable to the raw filaments α, β, γ, δ with different dyeing properties and have different base colors, the multiple types of pile filaments with different combinations of specified numbers of raw filaments α, β, γ, δ, that is, dye the raw filaments α, β, γ, δ in the multiple types of pile filaments respectively; and proceed to Step C. By selecting and combining four base colors from these base colors, C264=14950 quaternary dyeing modes are achieved.


Step C: Calculate, based on RGB values (Rα, Gα, Bα), (Rβ, Gβ, Bβ), (Rγ, Gγ, Bγ) and (Rξ, Gξ, Bξ) of the dyed raw filaments α, β, γ, δ in the multiple types of pile filaments with different combinations of specified numbers of raw filaments α, β, γ, δ, RGB values of the multiple types of pile filaments with different combinations of specified numbers of raw filaments α, β, γ, δ, that is, calculate RGB values (Rξ, Gξ, Bξ) of a chenille carpet pile ξ corresponding to different combinations of specified numbers of raw filaments α, β, γ, δ; and proceed to step D.


In a specific practical application of Step C, for example, the RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile ξ corresponding to different combinations of 4, 6 and 8 raw filaments α, β, γ, δ are calculated, as shown in Table 2.










TABLE 2








RGB values after combination










Combinations
Rξ
Gξ
Bξ





1α + 1β + 1γ + 1δ






1
4

*

R
α


+


1
4

*

R
β


+


1
4

*

R
γ


+


1
4

*

R
δ












1
4

*

G
α


+


1
4

*

G
β


+


1
4

*

G
γ


+


1
4

*

G
δ












1
4

*

B
α


+


1
4

*

B
β


+


1
4

*

B
γ


+


1
4

*

B
δ















RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile ξ corresponding to different combinations of 4 raw filaments α, β, γ, δ are calculated.


A design of the chenille carpet pile ξ corresponding to 6 raw filaments is shown in Table 3.










TABLE 3








RGB values after combination










Combinations
Rξ
Gξ
Bξ





3α + 1β + 1γ + 1δ






3
6

*

R
𝔞


+


1
6

*

R
β


+


1
6

*

R
γ


+


1
6

*

R
δ












3
6

*

G
α


+


1
6

*

G
β


+


1
6

*

G
γ


+


1
6

*

G
δ












3
6

*

B
α


+


1
6

*

B
β


+


1
6

*

B
γ


+


1
6

*

B
δ











2α + 2β + 1γ + 1δ






2
6

*

R
𝔞


+


2
6

*

R
β


+


1
6

*

R
γ


+


1
6

*

R
δ












2
6

*

G
α


+


2
6

*

G
β


+


1
6

*

G
γ


+


1
6

*

G
δ












2
6

*

B
α


+


2
6

*

B
β


+


1
6

*

B
γ


+


1
6

*

B
δ











2α + 1β + 2γ + 1δ






2
6

*

R
α


+


1
6

*

R
β


+


2
6

*

R
γ


+


1
6

*

R
δ












2
6

*

G
α


+


1
6

*

G
β


+


2
6

*

G
γ


+


1
6

*

G
δ












2
6

*

B
α


+


1
6

*

B
β


+


2
6

*

B
γ


+


1
6

*

B
δ











2α + 1β + 1γ + 2δ






2
6

*

R
α


+


1
6

*

R
β


+


1
6

*

R
γ


+


2
6

*

R
δ












2
6

*

G
α


+


1
6

*

G
β


+


1
6

*

G
γ


+


2
6

*

G
δ












2
6

*

B
α


+


1
6

*

B
β


+


1
6

*

B
γ


+


2
6

*

B
δ











1α + 3β + 1γ + 1δ






1
6

*

R
α


+


3
6

*

R
β


+


1
6

*

R
γ


+


1
6

*

R
δ












1
6

*

G
α


+


3
6

*

G
β


+


1
6

*

G
γ


+


1
6

*

G
δ












1
6

*

B
α


+


3
6

*

B
β


+


1
6

*

B
γ


+


1
6

*

B
δ











1α + 2β + 2γ + 1δ






1
6

*

R
α


+


2
6

*

R
β


+


2
6

*

R
γ


+


1
6

*











1
6

*

G
α


+


2
6

*

G
β


+


2
6

*

G
γ


+


1
6

*

G
δ












1
6

*

B
α


+


2
6

*

B
β


+


2
6

*

B
γ


+


1
6

*

B
δ











1α + 2β + 1γ + 2δ






1
6

*

R
α


+


2
6

*

R
β


+


1
6

*

R
γ


+


2
6

*

R
δ












1
6

*

G
α


+


2
6

*

G
β


+


1
6

*

G
γ


+


2
6

*

G
δ












1
6

*

B
α


+


2
6

*

B
β


+


1
6

*

B
γ


+


2
6

*

B
δ











1α + 1β + 3γ + 1δ






1
6

*

R
α


+


1
6

*

R
β


+


3
6

*

R
γ


+


1
6

*

R
δ












1
6

*

G
α


+


1
6

*

G
β


+


3
6

*

G
γ


+


1
6

*

G
δ












1
6

*

B
α


+


1
6

*

B
β


+


3
6

*

B
γ


+


1
6

*

B
δ











1α + 1β + 2γ + 2δ






1
6

*

R
α


+


1
6

*

R
β


+


2
6

*

R
γ


+


2
6

*

R
δ












1
6

*

G
α


+


1
6

*

G
β


+


2
6

*

G
γ


+


2
6

*

G
δ












1
6

*

B
α


+


1
6

*

B
β


+


2
6

*

B
γ


+


2
6

*

B
δ











1α + 1β + 1γ + 3δ






1
6

*

R
α


+


1
6

*

R
β


+


1
6

*

R
γ


+


3
6

*

R
δ












1
6

*

G
α


+


1
6

*

G
β


+


1
6

*

G
γ


+


3
6

*

G
δ












1
6

*

B
α


+


1
6

*

B
β


+


1
6

*

B
γ


+


3
6

*

B
δ















RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile ξ corresponding to different combinations of 6 raw filaments α, β, γ, δ are calculated.


A design of the chenille carpet pile ξ corresponding to 8 raw filaments is shown in Table 4.










TABLE 4








RGB values after combination










Combinations
Rξ
Gξ
Bξ





5α + 1β + 1γ + 1δ






5
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












5
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












5
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











4α + 2β + 1γ + 1δ






4
8

*

R
α


+


2
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












4
8

*

G
α


+


2
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












4
8

*

B
α


+


2
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











4α + 1β + 2γ + 1δ






4
8

*

R
α


+


1
8

*

R
β


+


2
8

*

R
γ


+


1
8

*

R
δ












4
8

*

G
α


+


1
8

*

G
β


+


2
8

*

G
γ


+


1
8

*

G
δ












4
8

*

B
α


+


1
8

*

B
β


+


2
8

*

B
γ


+


1
8

*

B
δ











4α + 1β + 1γ + 2δ






4
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


2
8

*

R
δ












4
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


2
8

*

G
δ












4
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


2
8

*

B
δ











3α + 3β + 1γ + 1δ






3
8

*

R
α


+


3
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












3
8

*

G
α


+


3
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












3
8

*

B
α


+


3
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











3α + 2β + 2γ + 1δ






3
8

*

R
α


+


2
8

*

R
β


+


2
8

*

R
γ


+


1
8

*

R
δ












3
8

*

G
α


+


2
8

*

G
β


+


2
8

*

G
γ


+


1
8

*

G
δ












3
8

*

B
α


+


2
8

*

B
β


+


2
8

*

B
γ


+


1
8

*

B
δ











3α + 2β + 1γ + 2δ






3
8

*

R
α


+


2
8

*

R
β


+


1
8

*

R
γ


+


2
8

*

R
δ












3
8

*

G
α


+


2
8

*

G
β


+


1
8

*

G
γ


+


2
8

*

G
δ












3
8

*

B
α


+


2
8

*

B
β


+


1
8

*

B
γ


+


2
8

*

B
δ











3α + 1β + 3γ + 1δ






3
8

*

R
α


+


1
8

*

R
β


+


3
8

*

R
γ


+


1
8

*

R
δ












3
8

*

G
α


+


1
8

*

G
β


+


3
8

*

G
γ


+


1
8

*

G
δ












3
8

*

B
α


+


1
8

*

B
β


+


3
8

*

B
γ


+


1
8

*

B
δ











3α + 1β + 2γ + 2δ






3
8

*

R
α


+


1
8

*

R
β


+


2
8

*

R
γ


+


2
8

*

R
δ












3
8

*

G
α


+


1
8

*

G
β


+


2
8

*

G
γ


+


2
8

*

G
δ












3
8

*

B
α


+


1
8

*

B
β


+


2
8

*

B
γ


+


2
8

*

B
δ











3α + 1β + 1γ + 3δ






3
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


3
8

*

R
δ












3
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


3
8

*

G
δ












3
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


3
8

*

B
δ











2α + 4β + 1γ + 1δ






2
8

*

R
α


+


4
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












2
8

*

G
α


+


4
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












2
8

*

B
α


+


4
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











2α + 3β + 2γ + 1δ






2
8

*

R
α


+


3
8

*

R
β


+


2
8

*

R
γ


+


1
8

*

R
δ












2
8

*

G
α


+


3
8

*

G
β


+


2
8

*

G
γ


+


1
8

*

G
δ












2
8

*

B
α


+


3
8

*

B
β


+


2
8

*

B
γ


+


1
8

*

B
δ











2α + 3β + 1γ + 2δ






2
8

*

R
α


+


3
8

*

R
β


+


1
8

*

R
γ


+


2
8

*

R
δ












2
8

*

G
α


+


3
8

*

G
β


+


1
8

*

G
γ


+


2
8

*

G
δ












2
8

*

B
α


+


3
8

*

B
β


+


1
8

*

B
γ


+


2
8

*

B
δ











2α + 2β + 3γ + 1δ






2
8

*

R
α


+


2
8

*

R
β


+


3
8

*

R
γ


+


1
8

*

R
δ












2
8

*

G
α


+


2
8

*

G
β


+


3
8

*

G
γ


+


1
8

*

G
δ












2
8

*

B
α


+


2
8

*

B
β


+


3
8

*

B
γ


+


1
8

*

B
δ











2α + 2β + 2γ + 2δ






2
8

*

R
α


+


2
8

*

R
β


+


2
8

*

R
γ


+


2
8

*

R
δ












2
8

*

G
α


+


2
8

*

G
β


+


2
8

*

G
γ


+


2
8

*

G
δ












2
8

*

B
α


+


2
8

*

B
β


+


2
8

*

B
γ


+


2
8

*

B
δ











2α + 2β + 1γ + 3δ






2
8

*

R
α


+


2
8

*

R
β


+


1
8

*

R
γ


+


3
8

*

R
δ












2
8

*

G
α


+


2
8

*

G
β


+


1
8

*

G
γ


+


3
8

*

G
δ












2
8

*

B
α


+


2
8

*

B
β


+


1
8

*

B
γ


+


3
8

*

B
δ











2α + 1β + 4γ + 1δ






2
8

*

R
α


+


1
8

*

R
β


+


4
8

*

R
γ


+


1
8

*

R
δ












2
8

*

G
α


+


1
8

*

G
β


+


4
8

*

G
γ


+


1
8

*

G
δ












2
8

*

B
α


+


1
8

*

B
β


+


4
8

*

B
γ


+


1
8

*

B
δ











2α + 1β + 3γ + 2δ






2
8

*

R
α


+


1
8

*

R
β


+


3
8

*

R
γ


+


2
8

*

R
δ












2
8

*

G
α


+


1
8

*

G
β


+


3
8

*

G
γ


+


2
8

*

G
δ












2
8

*

B
α


+


1
8

*

B
β


+


3
8

*

B
γ


+


2
8

*

B
δ











2α + 1β + 2γ + 3δ






2
8

*

R
α


+


1
8

*

R
β


+


2
8

*

R
γ


+


3
8

*

R
δ












2
8

*

G
α


+


1
8

*

G
β


+


2
8

*

G
γ


+


3
8

*

G
δ












2
8

*

B
α


+


1
8

*

B
β


+


2
8

*

B
γ


+


3
8

*

B
δ











2α + 1β + 1γ + 4δ






2
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


4
8

*

R
δ












2
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


4
8

*

G
δ












2
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


4
8

*

B
δ











1α + 5β + 1γ + 1δ






1
8

*

R
α


+


5
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


5
8

*

G
β


+


1
8

*

G
Y


+


1
8

*

G
δ












1
8

*

B
α


+


5
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











1α + 4β + 2γ + 1δ






1
8

*

R
α


+


4
8

*

R
β


+


2
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


4
8

*

G
β


+


2
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


4
8

*

B
β


+


2
8

*

B
γ


+


1
8

*

B
δ











1α + 4β + 1γ + 2δ






1
8

*

R
α


+


4
8

*

R
β


+


1
8

*

R
γ


+


2
8

*

R
δ












1
8

*

G
α


+


4
8

*

G
β


+


1
8

*

G
γ


+


2
8

*

G
δ












1
8

*

B
α


+


4
8

*

B
β


+


1
8

*

B
γ


+


2
8

*

B
δ











1α + 3β + 3γ + 1δ






1
8

*

R
α


+


3
8

*

R
β


+


3
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


3
8

*

G
β


+


3
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


3
8

*

B
β


+


3
8

*

B
γ


+


1
8

*

B
δ











1α + 3β + 2γ + 2δ






1
8

*

R
α


+


3
8

*

R
β


+


2
8

*

R
γ


+


2
8

*

R
δ












1
8

*

G
α


+


3
8

*

G
β


+


2
8

*

G
γ


+


2
8

*

G
δ












1
8

*

B
α


+


3
8

*

B
β


+


2
8

*

B
γ


+


2
8

*

B
δ











1α + 3β + 1γ + 3δ






1
8

*

R
α


+


3
8

*

R
β


+


1
8

*

R
γ


+


3
8

*

R
δ












1
8

*

G
α


+


3
8

*

G
β


+


1
8

*

G
γ


+


3
8

*

G
δ












1
8

*

B
α


+


3
8

*

B
β


+


1
8

*

B
γ


+


3
8

*

B
δ











1α + 2β + 4γ + 1δ






1
8

*

R
α


+


2
8

*

R
β


+


4
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


2
8

*

G
β


+


4
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


2
8

*

B
β


+


4
8

*

B
γ


+


1
8

*

B
δ











1α + 2β + 3γ + 2δ






1
8

*

R
α


+


2
8

*

R
β


+


3
8

*

R
γ


+


2
8

*

R
δ












1
8

*

G
α


+


2
8

*

G
β


+


3
8

*

G
γ


+


2
8

*

G
δ












1
8

*

B
α


+


2
8

*

B
β


+


3
8

*

B
γ


+


2
8

*

B
δ











1α + 2β + 2γ + 3δ






1
8

*

R
α


+


2
8

*

R
β


+


2
8

*

R
γ


+


3
8

*

R
δ












1
8

*

G
α


+


2
8

*

G
β


+


2
8

*

G
γ


+


3
8

*

G
δ












1
8

*

B
α


+


2
8

*

B
β


+


2
8

*

B
γ


+


3
8

*

B
δ











1α + 2β + 1γ + 4δ






1
8

*

R
α


+


2
8

*

R
β


+


1
8

*

R
γ


+


4
8

*

R
δ












1
8

*

G
α


+


2
8

*

G
β


+


1
8

*

G
γ


+


4
8

*

G
δ












1
8

*

B
α


+


2
8

*

B
β


+


1
8

*

B
γ


+


4
8

*

B
δ











1α + 1β + 5γ + 1δ






1
8

*

R
α


+


1
8

*

R
β


+


5
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


5
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


5
8

*

B
γ


+


1
8

*

B
δ











1α + 1β + 4γ + 2δ






1
8

*

R
α


+


1
8

*

R
β


+


4
8

*

R
γ


+


2
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


4
8

*

G
γ


+


2
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


4
8

*

B
γ


+


2
8

*

B
δ











1α + 1β + 3γ + 3δ






1
8

*

R
α


+


1
8

*

R
β


+


3
8

*

R
γ


+


3
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


3
8

*

G
γ


+


3
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


3
8

*

B
γ


+


3
8

*

B
δ











1α + 1β + 2γ + 4δ






1
8

*

R
α


+


1
8

*

R
β


+


2
8

*

R
γ


+


4
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


2
8

*

G
γ


+


4
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


2
8

*

B
γ


+


4
8

*

B
δ











1α + 1β + 1γ + 5δ






1
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


5
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


5
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


5
8

*

B
δ















RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile ξ corresponding to different combinations of 8 raw filaments α, β, γ, δ are calculated.


For a unified dyeing scheme, the present disclosure regulates the mixing ratio of the four-component filaments such that the chenille pile can visually present a hazy, moderate or clear color mixing effect. For a four-component chenille pile with a certain mixing ratio, the present disclosure regulates the dominant and secondary hues of the dyed color of each component fiber by changing the dyeing formula, and regulates the color difference to make the chenille pile visually present a hazy, moderate or clear color mixing effect.


By dyeing the four-component fibers with the same color with different luminance and different saturation, or dyeing the four-component fibers with different colors in adjacent and analogous color areas, the mixed colors visually present a hazy color separation effect. By dyeing the four-component fibers with different colors in tetradic color areas, the mixed colors visually present a moderate color separation effect. By dyeing the four-component fibers with different colors in opponent color areas, the mixed colors visually present a clear color separation effect.


Step D: Select combinations of four base colors with preset hue differences from preset base colors; dyeing, by the combinations of the four base colors, the raw filaments α, β, γ, δ in the multiple types of pile filaments respectively according to Step B to obtain multiple types of mixed-color pile filaments with the preset hue differences; and construct, based on the RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile ξ corresponding to different combinations of specified numbers of raw filaments α, β, γ, δ preset types of chenille carpet piles by tufting the multiple types of mixed-color pile filaments with the preset hue differences.


Specifically, in Step D, the preset hue differences include a hue difference of less than 60°, a hue difference of greater than 60° and less than 120°, and a hue difference of greater than 120° and less than 180°. In a specific design implementation, when the hue difference is less than 60°, combinations of four base colors with a hue difference of less than 60° are selected from the preset base colors. The raw filaments α, β, γ, δ in the multiple types of pile filaments are dyed respectively by the combinations of the four base colors according to Step B to obtain multiple types of mixed-color pile filaments with a hue difference of less than 60°. Based on the RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile ξ corresponding to different combinations of specified numbers of raw filaments α, β, γ, δ, a chenille carpet pile with a moderate color mixing effect is constructed by tufting the multiple types of mixed-color pile filaments with a hue difference of less than 60°.


In the method of tufting mixed-color pile filaments, when the chenille carpet pile is prepared by mixing 4 raw filaments, a color mixing gradient is ¼. When the chenille carpet pile is prepared by mixing 6 raw filaments, the color mixing gradient is ⅙. When the chenille carpet pile is prepared by mixing 8 raw filaments, the color mixing gradient is ⅛.


When the hue difference is greater than 60° and less than 120°, combinations of four base colors with a hue difference of greater than 60° and less than 120° are selected from the preset base colors. The raw filaments α, β, γ, δ in the multiple types of pile filaments are dyed respectively by the combinations of the four base colors according to Step B to obtain multiple types of mixed-color pile filaments with a hue difference of greater than 60° and less than 120°. Based on the RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile ξ corresponding to different combinations of specified numbers of raw filaments α, β, γ, δ, a chenille carpet pile with a moderate color mixing effect is constructed by tufting the multiple types of mixed-color pile filaments with a hue difference of greater than 60° and less than 120°.


In the method of tufting mixed-color pile filaments, when the chenille carpet pile is prepared by mixing 4 raw filaments, the color mixing gradient is ¼. When the chenille carpet pile is prepared by mixing 6 raw filaments, the color mixing gradient is ⅙. When the chenille carpet pile is prepared by mixing 8 raw filaments, the color mixing gradient is ⅛.


When the hue difference is greater than 120° and less than 180°, combinations of four base colors with a hue difference of greater than 120° and less than 180° and combinations of three base colors with a hue difference of greater than 120° and less than 180° are selected from the preset base colors from the preset base colors to cooperate with white or black to form combinations of four base colors. The raw filaments α, β, γ, δ in the multiple types of pile filaments are dyed respectively by the combinations of four base colors according to Step B to obtain multiple types of mixed-color pile filaments with a hue difference of greater than 120° and less than 180°. Based on the RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile ξ corresponding to different combinations of specified numbers of raw filaments α, β, γ, δ, a chenille carpet pile with a clear color mixing effect is constructed by tufting the multiple types of mixed-color pile filaments with a hue difference of greater than 120° and less than 180°.


In the method of tufting mixed-color pile filaments, when the chenille carpet pile is prepared by mixing 4 raw filaments, a color mixing gradient is ¼. When the chenille carpet pile is prepared by mixing 6 raw filaments, the color mixing gradient is ⅙. When the chenille carpet pile is prepared by mixing 8 raw filaments, the color mixing gradient is ⅛.



FIG. 3 shows the practical application of the construction of the pattern of the chenille carpet pile, the application of the RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile ξ corresponding to 6 raw filaments, the application of the 24 base colors, and the design of gradient patterns of color-mixed chenille carpet piles in an embodiment regarding chenille carpet piles with a gradient change in the hazy color mixing effect.


The RGB values of the chenille carpet pile with a hazy color mixing effect are shown in Table 5.












TABLE 5








RGB values





ξ(Rξ, Gξ, Bξ) of





gradient



Combinations of

mixed-color pile


SN
colors
Color mixing ratio
filaments





















1
A1 + A2 + A3 + A5
Column A pile
3/6*CA1 + 1/6*CA2 + 1/6*CA3 + 1/6*CA5
255
74
0




Column B pile
2/6*CA1 + 2/6*CA2 + 1/6*CA3 + 1/6*CA5
255
85
0




Column C pile
1/6*CA1 + 3/6*CA2 + 1/6*CA3 + 1/6*CA5
255
96
0




Column D pile
1/6*CA1 + 2/6*CA2 + 2/6*CA3 + 1/6*CA5
255
106
0




Column E pile
1/6*CA1 + 1/6*CA2 + 3/6*CA3 + 1/6*CA5
255
117
0




Column F pile
1/6*CA1 + 1/6*CA2 + 2/6*CA3 + 2/6*CA5
255
138
0




Column G pile
1/6*CA1 + 1/6*CA2 + 1/6*CA3 + 3/6*CA5
255
159
0




Column H pile
2/6*CA1 + 1/6*CA2 + 1/6*CA3 + 2/6*CA5
255
117
0


2
A2 + A3 + A4 + A6
Column A pile
3/6*CA2 + 1/6*CA3 + 1/6*CA4 + 1/6*CA6
244
128
0




Column B pile
2/6*CA2 + 2/6*CA3 + 1/6*CA4 + 1/6*CA6
244
138
0




Column C pile
1/6*CA2 + 3/6*CA3 + 1/6*CA4 + 1/6*CA6
244
149
0




Column D pile
1/6*CA2 + 2/6*CA3 + 2/6*CA4 + 1/6*CA6
244
160
0




Column E pile
1/6*CA2 + 1/6*CA3 + 3/6*CA4 + 1/6*CA6
244
170
0




Column F pile
1/6*CA2 + 1/6*CA3 + 2/6*CA4 + 2/6*CA6
233
181
0




Column G pile
1/6*CA2 + 1/6*CA3 + 1/6*CA4 + 3/6*CA6
223
191
0




Column H pile
2/6*CA2 + 1/6*CA3 + 1/6*CA4 + 2/6*CA6
233
160
0


3
A3 + A4 + A5 + A7
Column A pile
3/6*CA3 + 1/6*CA4 + 1/6*CA5 + 1/6*CA7
233
181
0




Column B pile
2/6*CA3 + 2/6*CA4 + 1/6*CA5 + 1/6*CA7
233
191
0




Column C pile
1/6*CA3 + 3/6*CA4 + 1/6*CA5 + 1/6*CA7
233
202
0




Column D pile
1/6*CA3 + 2/6*CA4 + 2/6*CA5 + 1/6*CA7
233
213
0




Column E pile
1/6*CA3 + 1/6*CA4 + 3/6*CA5 + 1/6*CA7
233
223
0




Column F pile
1/6*CA3 + 1/6*CA4 + 2/6*CA5 + 2/6*CA7
213
223
0




Column G pile
1/6*CA3 + 1/6*CA4 + 1/6*CA5 + 3/6*CA7
191
223
0




Column H pile
2/6*CA3 + 1/6*CA4 + 1/6*CA5 + 2/6*CA7
213
202
0










FIG. 4 shows the application of the RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile ξ corresponding to 6 raw filaments, the application of the 24 base colors, and the design of gradient patterns of color-mixed chenille carpet piles in an embodiment regarding chenille carpet piles with a gradient change in the moderate color mixing effect.


The RGB values of the chenille carpet pile with a moderate color mixing effect are shown in Table 6.












TABLE 6








RGB values





ξ(Rξ, Gξ, Bξ) of





gradient



Combinations of

mixed-color pile


SN
colors
Color mixing ratio
filaments





















1
A1 + A2 + A3 + A8
Column A pile
3/6*CA1 + 1/6*CA2 + 1/6*CA3 + 1/6*CA8
223
75
0




Column B pile
2/6*CA1 + 2/6*CA2 + 1/6*CA3 + 1/6*CA8
223
80
0




Column C pile
1/6*CA1 + 3/6*CA2 + 1/6*CA3 + 1/6*CA8
223
96
0




Column D pile
1/6*CA1 + 2/6*CA2 + 2/6*CA3 + 1/6*CA8
223
107
0




Column E pile
1/6*CA1 + 1/6*CA2 + 3/6*CA3 + 1/6*CA8
223
117
0




Column F pile
1/6*CA1 + 1/6*CA2 + 2/6*CA3 + 2/6*CA8
191
138
0




Column G pile
1/6*CA1 + 1/6*CA2 + 1/6*CA3 + 3/6*CA8
159
160
0




Column H pile
2/6*CA1 + 1/6*CA2 + 1/6*CA3 + 2/6*CA8
191
117
0


2
A2 + A3 + A4 + A9
Column A pile
3/6*CA2 + 1/6*CA3 + 1/6*CA4 + 1/6*CA9
213
128
0




Column B pile
2/6*CA2 + 2/6*CA3 + 1/6*CA4 + 1/6*CA9
213
138
0




Column C pile
1/6*CA2 + 3/6*CA3 + 1/6*CA4 + 1/6*CA9
213
149
0




Column D pile
1/6*CA2 + 2/6*CA3 + 2/6*CA4 + 1/6*CA9
213
160
0




Column E pile
1/6*CA2 + 1/6*CA3 + 3/6*CA4 + 1/6*CA9
213
170
0




Column F pile
1/6*CA2 + 1/6*CA3 + 2/6*CA4 + 2/6*CA9
170
181
0




Column G pile
1/6*CA2 + 1/6*CA3 + 1/6*CA4 + 3/6*CA9
128
191
0




Column H pile
2/6*CA2 + 1/6*CA3 + 1/6*CA4 + 2/6*CA9
170
160
0


3
A3 + A4 + A5 + A10
Column A pile
3/6*CA3 + 1/6*CA4 + 1/6*CA5 + 1/6*CA10
213
181
11




Column B pile
2/6*CA3 + 2/6*CA4 + 1/6*CA5 + 1/6*CA10
213
191
11




Column C pile
1/6*CA3 + 3/6*CA4 + 1/6*CA5 + 1/6*CA10
213
202
11




Column D pile
1/6*CA3 + 2/6*CA4 + 2/6*CA5 + 1/6*CA10
213
213
11




Column E pile
1/6*CA3 + 1/6*CA4 + 3/6*CA5 + 1/6*CA10
213
223
11




Column F pile
1/6*CA3 + 1/6*CA4 + 2/6*CA5 + 2/6*CA10
170
223
21




Column G pile
1/6*CA3 + 1/6*CA4 + 1/6*CA5 + 3/6*CA10
128
223
32




Column H pile
2/6*CA3 + 1/6*CA4 + 1/6*CA5 + 2/6*CA10
170
202
21










FIG. 5 shows the application of the RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile ξ corresponding to 6 raw filaments, the application of the 24 base colors, and the design of gradient patterns of color-mixed chenille carpet piles in an embodiment regarding chenille carpet piles with a gradient change in the clear color mixing effect.


The RGB values of the chenille carpet pile with a clear color mixing effect are shown in Table 7.












TABLE 7








RGB values





ξ(Rξ, Gξ, Bξ) of





gradient



Combinations of

mixed-color pile


SN
colors
Color mixing ratio
filaments





















1
A1 + A2 + A4 + A13
Column A pile
3/6*CA1 + 1/6*CA2 + 1/6*CA4 + 1/6*CA13
213
86
43




Column B pile
2/6*CA1 + 2/6*CA2 + 1/6*CA4 + 1/6*CA13
213
96
43




Column C pile
1/6*CA1 + 3/6*CA2 + 1/6*CA4 + 1/6*CA13
213
107
43




Column D pile
1/6*CA1 + 2/6*CA2 + 2/6*CA4 + 1/6*CA13
213
128
43




Column E pile
1/6*CA1 + 1/6*CA2 + 3/6*CA4 + 1/6*CA13
213
149
43




Column F pile
1/6*CA1 + 1/6*CA2 + 2/6*CA4 + 2/6*CA13
170
159
85




Column G pile
1/6*CA1 + 1/6*CA2 + 1/6*CA4 + 3/6*CA13
128
171
128




Column H pile
2/6*CA1 + 1/6*CA2 + 1/6*CA4 + 2/6*CA13
170
128
85


2
A2 + A3 + A5 + A14
Column A pile
3/6*CA2 + 1/6*CA3 + 1/6*CA5 + 1/6*CA14
213
128
43




Column B pile
2/6*CA2 + 2/6*CA3 + 1/6*CA5 + 1/6*CA14
213
138
43




Column C pile
1/6*CA2 + 3/6*CA3 + 1/6*CA5 + 1/6*CA14
213
149
43




Column D pile
1/6*CA2 + 2/6*CA3 + 2/6*CA5 + 1/6*CA14
213
170
43




Column E pile
1/6*CA2 + 1/6*CA3 + 3/6*CA5 + 1/6*CA14
213
191
43




Column F pile
1/6*CA2 + 1/6*CA3 + 2/6*CA5 + 2/6*CA14
170
180
85




Column G pile
1/6*CA2 + 1/6*CA3 + 1/6*CA5 + 3/6*CA14
128
170
128




Column H pile
2/6*CA2 + 1/6*CA3 + 1/6*CA5 + 2/6*CA14
170
149
85


3
A3 + A4 + A6 + A15
Column A pile
3/6*CA3 + 1/6*CA4 + 1/6*CA6 + 1/6*CA15
202
160
43




Column B pile
2/6*CA3 + 2/6*CA4 + 1/6*CA6 + 1/6*CA15
202
170
43




Column C pile
1/6*CA3 + 3/6*CA4 + 1/6*CA6 + 1/6*CA15
202
181
43




Column D pile
1/6*CA3 + 2/6*CA4 + 2/6*CA6 + 1/6*CA15
191
191
43




Column E pile
1/6*CA3 + 1/6*CA4 + 3/6*CA6 + 1/6*CA15
180
202
43




Column F pile
1/6*CA3 + 1/6*CA4 + 2/6*CA6 + 2/6*CA15
149
181
85




Column G pile
1/6*CA3 + 1/6*CA4 + 1/6*CA6 + 3/6*CA15
117
160
128




Column H pile
2/6*CA3 + 1/6*CA4 + 1/6*CA6 + 2/6*CA15
159
160
85









In the above technical solutions, the present disclosure combines raw filaments with different dyeing properties to prepare chenille yarns, and changes the combination modes and ratios of the raw filaments to prepare a four-component chenille carpet pile. The present disclosure realizes the heterochromaticity of the four-component pile through the uneven distribution of different dyes on the four-component raw filaments, and regulates the color difference of the four-component filaments after dyeing to form patterns with hazy, moderate and clear color mixing effects. Different from the additive mixing of color light and the subtractive mixing of pigments, the mixing of different colors dyed on the fibers in the four-component chenille carpet pile is spatial juxtaposition mixing, which will form a non-uniform and constant mixed color. According to the different mixing ratios of the color fibers and the interaction between the fiber hues, a composite color consisting of dominant and secondary hues will be produced. The composite color will blend or separate with different viewing distance, angle, ambient light and other factors, resulting in a dynamic color. The entire design implementation of the present disclosure can effectively improve the efficiency of constructing the pattern of the chenille carpet pile.


Although the embodiments of the present disclosure are described in detail above in conjunction with the drawings, the present disclosure is not limited to the above-described embodiments, and various changes may be made without departing from the spirit of the present disclosure within the knowledge of those skilled in the art.

Claims
  • 1. A regulation method of dyeing for patterning a four-component chenille carpet pile, comprising the following steps: step A: providing four types of raw filaments α, β, γ, δ with equal linear densities and different dyeing properties; mixing the four types of the raw filaments α, β, γ, δ to obtain multiple types of pile filaments corresponding to different combinations of a specified number of the raw filaments α, β, γ, δ, forming a four-component chenille carpet pile filament system; and proceeding to step B;step B: using four preset types of dyes with the different dyeing properties and different base colors that are respectively applicable to the raw filaments α, β, γ, δ to dye the multiple types of pile filaments corresponding to the different combinations of a specified number of the raw filaments α, β, γ, δ, thereby obtaining dyed raw filaments α, β, γ, δ in the multiple types of pile filaments respectively; and proceeding to step C;step C: calculating, based on red, green and blue (RGB) values (Rα, Gα, Bα), (Rβ, Gβ, Bβ), (Rγ, Gγ, Bγ) and (Rδ, Gδ, Bδ) of the dyed raw filaments α, β, γ, δ in the multiple types of pile filaments corresponding to the different combinations of the specified number of the raw filaments α, β, γ, δ, RGB values of the multiple types of pile filaments corresponding to the different combinations of the specified number of the raw filaments α, β, γ, δ, thereby calculating RGB values (Rξ, Gξ, Bξ) of a chenille carpet pile ξ corresponding to the different combinations of the specified number of the raw filaments α, β, γ, δ; and proceeding to step D; andstep D: selecting combinations of four base colors with preset hue differences from preset base colors; dyeing, by the combinations of the four base colors, the raw filaments α, β, γ, δ in the multiple types of pile filaments respectively according to step B to obtain multiple types of mixed-color pile filaments with the preset hue differences; and constructing, according to the RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile ξ corresponding to the different combinations of the specified number of the raw filaments α, β, γ, δ, preset types of chenille carpet piles by tufting the multiple types of mixed-color pile filaments with the preset hue differences.
  • 2. The regulation method according to claim 1, wherein step A comprises: providing the four types of the raw filaments α, β, γ, δ with the equal linear densities and the different dyeing properties, as shown in Table 1; and
  • 3. The regulation method according to claim 1, wherein when the specified number of the raw filaments α, β, γ, δ is four, step C comprises: based on Table 2,
  • 4. The regulation method according to claim 1, wherein when the specified number of the raw filaments α, β, γ, δ is six, step C comprises: based on Table 3,
  • 5. The regulation method according to claim 1, wherein when the specified number of the raw filaments α, β, γ, δ is eight, step C comprises: based on Table 4,
  • 6. The regulation method according to claim 1, wherein step D comprises: selecting combinations of four base colors with a hue difference of less than 60° from the preset base colors; dyeing, by the combinations of the four base colors, the raw filaments α, β, γ, δ in the multiple types of pile filaments respectively according to step B to obtain multiple types of mixed-color pile filaments with the hue difference of less than 60°; and constructing, based on the RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile ξ corresponding to the different combinations of the specified number of the raw filaments α, β, γ, δ, a chenille carpet pile with a hazy color mixing effect by tufting the multiple types of mixed-color pile filaments with the hue difference of less than 60°.
  • 7. The regulation method according to claim 1, wherein step D comprises: selecting combinations of four base colors with a hue difference of greater than 60° and less than 120° from the preset base colors; dyeing, by the combinations of the four base colors, the raw filaments α, β, γ, δ in the multiple types of pile filaments respectively according to step B to obtain multiple types of mixed-color pile filaments with the hue difference of greater than 60° and less than 120°; and constructing, based on the RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile ξ corresponding to the different combinations of the specified number of the raw filaments α, β, γ, δ, a chenille carpet pile with a moderate color mixing effect by tufting the multiple types of mixed-color pile filaments with the hue difference of greater than 60° and less than 120°.
  • 8. The regulation method according to claim 1, wherein step D comprises: selecting combinations of four base colors with a hue difference of greater than 120° and less than 180° from the preset base colors, and selecting combinations of three base colors with the hue difference of greater than 120° and less than 180° from the preset base colors to cooperate with white or black to form combinations of four base colors; dyeing, by the combinations of the four base colors, the raw filaments α, β, γ, δ in the multiple types of pile filaments respectively according to step B to obtain multiple types of mixed-color pile filaments with the hue difference of greater than 120° and less than 180° from the preset base colors; and constructing, based on the RGB values (Rξ, Gξ, Bξ) of the chenille carpet pile ξ corresponding to the different combinations of the specified number of the raw filaments α, β, γ, δ, a chenille carpet pile with a clear color mixing effect by tufting the multiple types of mixed-color pile filaments with the hue difference of greater than 120° and less than 180° from the preset base colors.
Priority Claims (1)
Number Date Country Kind
202110726890.4 Jun 2021 CN national
CROSS REFERENCE TO THE RELATED APPLICATIONS

This application is a continuation application of International Application No. PCT/CN2021/108349, filed on Jul. 26, 2021, which is based upon and claims priority to Chinese Patent Application No. 202110726890.4, filed on Jun. 29, 2021, the entire contents of which are incorporated herein by reference.

Continuations (1)
Number Date Country
Parent PCT/CN2021/108349 Jul 2021 US
Child 17882646 US