Regulation of Endothelial Cell Branching Morphogenesis via MCAK-targted Control

Information

  • Research Project
  • 8739669
  • ApplicationId
    8739669
  • Core Project Number
    K22HL113069
  • Full Project Number
    5K22HL113069-03
  • Serial Number
    113069
  • FOA Number
  • Sub Project Id
  • Project Start Date
    9/23/2013 - 10 years ago
  • Project End Date
    6/30/2016 - 8 years ago
  • Program Officer Name
    WANG, WAYNE C.
  • Budget Start Date
    7/1/2014 - 10 years ago
  • Budget End Date
    6/30/2015 - 9 years ago
  • Fiscal Year
    2014
  • Support Year
    03
  • Suffix
  • Award Notice Date
    6/17/2014 - 10 years ago

Regulation of Endothelial Cell Branching Morphogenesis via MCAK-targted Control

DESCRIPTION (provided by applicant): The candidate's thesis research was performed in the laboratory of Dr. Peter W. Baas, and was directed towards identifying the mechanisms of microtubule transport by molecular motor proteins. This work has aided in the understanding of molecular motor protein regulation and coordination during neuronal development, and has spurred continuing studies targeting these same motor proteins as they function and malfunction in both neurodegenerative diseases and traumatic spinal cord injury. Research training in the Baas lab involved many diverse molecular and cellular biological techniques, and resulted in the publication of six peer-reviewed articles, two review articles, and two book chapters. The transition from neuronal studies of microtubules and molecular motor proteins to high-resolution imaging in endothelial cells was intuitive. Postdoctoral research studies were directed toward understanding mechanisms controlling endothelial cell branching morphology and vascular development by targeting local regulation of microtubule dynamic instability; specifically, how microtubule dynamics are driven by physical, contact-initiated signals from the extracellular matrix. These studies revealed that during angiogenesis, the formation and extension of cell branches by endothelial cells is directly related to the regulation of their microtubule growth speeds. Moreover, these studies revealed that microtubule growth speeds and endothelial cell branching can be predicted by the stiffness and dimensionality (2D vs. 3D) of the extracellular matrix, and suggest that microtubule regulatory proteins must respond to physical signals from the ECM with regional specificity to drive productive endothelial cell branching. The Career Development Award will provide continued training at NIH/NHLBI and support the goal of transitioning the proposed research plan to an independent laboratory upon the completion of the intramural phase. The Career Development Award will guide focused training at NIH to support the proposed Specific Aims in this application, as well as foster development as a mentor and teacher of science. Specific activities that will be supported during the intramural phase of the Career Development Award will include the formation of a designated Advisory Committee, responsible for evaluating progress of the proposed research plan as well as providing career development advice. Training during the intramural period of the Career Development Award will also involve mentoring of a post-baccalaureate student in experimental, interpretive, and communication skills, experimental training including further development of MatLab-based software and design of micro-fabricated patterns. The candidate's training in experimental design and technique will take place alongside the candidate's training as a teacher and mentor, including teaching experimental technique, data analysis and interpretation, and public presentation of results in the physiology course at the Marine Biological Laboratories. The intramural period of the Career Development Award will also involve the communication and presentation of results obtained from the experiments in the proposed Research Plan at local meetings and public presentations. The experiments in the proposed Research Plan will investigate how the localized regulation of microtubule dynamics is achieved during the process of endothelial cell vascular angiogenesis, a physiological process required for the development and maintenance of human vasculature throughout life. Angiogenesis is critically dependent upon endothelial cell branching, a process driven by signaling cues from the Rac1 and RhoA GTPases that coordinate the organization of the microtubule and acto-myosin cytoskeletons. In addition to these signaling cues, microtubule and acto-myosin organization can be modified by the stiffness and dimensionality of the extracellular matrix. The convergence of signaling cues on the regulation of microtubule dynamics suggests that Rac1 signaling, extracellular matrix signaling, or both, must control specific factors capable of regulating microtubule dynamics during endothelial cell branching. How such regulation is achieved is not known. One targeted regulator of MT dynamics is the MT catastrophe factor, MCAK, which localizes to growing MT ends until signaled to catalyze MT disassembly, thereby enabling spatiotemporal regulation of MT dynamics. During mitosis, MCAK-mediated catalysis of MT catastrophe is phospho-regulated, yet the regulation of cytoplasmic MCAK at growing MT ends, and its roles in mediating EC angiogenesis remain to be elucidated. The studies proposed in this application will use live-cell, high-resolution light microscopy and automated tracking of MT dynamics to first identify spatiotemporal Rac1-mediated regulation of MCAK on MT dynamics and EC branching morphology, and will then determine how cell engagement of 2D and 3D collagen ECMs target and regulate MCAK via myosinII-dependent and -independent pathways to drive productive EC branching morphogenesis and directed migration.

IC Name
NATIONAL HEART, LUNG, AND BLOOD INSTITUTE
  • Activity
    K22
  • Administering IC
    HL
  • Application Type
    5
  • Direct Cost Amount
    219911
  • Indirect Cost Amount
    17593
  • Total Cost
    237504
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    837
  • Ed Inst. Type
    SCHOOLS OF ARTS AND SCIENCES
  • Funding ICs
    NHLBI:237504\
  • Funding Mechanism
    OTHER RESEARCH-RELATED
  • Study Section
    NSS
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    UNIVERSITY OF THE SCIENCES PHILADELPHIA
  • Organization Department
    BIOLOGY
  • Organization DUNS
    079497681
  • Organization City
    PHILADELPHIA
  • Organization State
    PA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    191044495
  • Organization District
    UNITED STATES