The invention relates generally to the field of proteins related to angiogenic processes. The invention further relates to methods useful for inducing angiogenesis.
Angiogenesis is a critical function for normal organism functioning and survival. Insufficient angiogenesis can result in cell or tissue death. Excessive angiogenesis has been linked to tumor development and other undesirable conditions. Some of the genes and biochemical processes involved in angiogenesis have been described. For example, disregulation or enhanced activation of HIF-1α function have been implicated in a variety of pathological conditions including induced tumor growth rates9,17,18 and inflammatory angiogenesis19. Since it is important for organisms to maintain normal angiogenesis and for certain cells or tissues to be able to functionally counteract the activated form of HIF-1α, there remains a need in the art to provide both further information on the mechanisms that underlie angiogenesis and to present new methods useful in either increasing or decreasing angiogenesis.
It is therefore an object of the present invention to present further information related to angiogenesis and to supply novel methods to affect angiogenic responses.
According to a first embodiment of the invention, a pharmaceutical composition is provided which comprises the sequence of SEQ ID NOS:3, 4, 5, sequences complimentary to SEQ ID NO:1 or active fragments or analogs thereof. The composition may further comprise pharmaceutical carriers, adjuvants, and diluents.
According to a further embodiment of the invention, methods of increasing angiogenesis, methods of increasing HIF-1α function, methods of treating a hypoxia-related condition, and methods of maintaining normal cell or tissue function under hypoxic conditions in a cell, a group of cells, or an organism are provided, which comprise administering a pharmaceutically effective amount of a composition according to the first embodiment to the cell, group of cells, or organism. The hypoxia-related condition may be, for example, ischemia, coronary heart disease, wound healing, stroke, or diabetic ulceration.
According to a further embodiment of the invention, a plasmid is provided comprising the sequence of SEQ ID NOS:3, 4, 5, or sequences complimentary to SEQ ID NO:1. The invention also includes vectors containing such a plasmid and host cells transfected with such a vector.
According to a further embodiment of the invention, a host cell is provided which expresses the protein encoded by any one of SEQ ID NOS:3, 4, or 5.
Alteration of gene expression is a crucial component of adaptive responses to hypoxia. These responses are mediated by hypoxia-inducible transcription factors (HIFs)1,2. A novel basic helix-loop-helix (bHLH)/PAS protein related to HIFs was identified by methods detailed below and termed Inhibitory PAS (Per/Arnt/Sim) domain protein, or IPAS. IPAS was found to contain no transactivation function and demonstrated dominant negative regulation of HIF-mediated control of gene expression. Ectopic expression of IPAS in hepatoma cells selectively impaired induction of genes involved in adaptation to a hypoxic environment, notably the vascular endothelial growth factor (VEGF) gene. It also resulted in retarded tumor growth and reduced tumor vascular density in vivo.
IPAS shows predominantly nuclear localization under both normoxic and hypoxic conditions, as assessed by green fluorescent fusion protein assays (data not shown). As described more fully below, IPAS was predominantly expressed in mice in Purkinje cells of the cerebellum and in corneal epithelium of the eye. Expression of IPAS in the cornea correlated with low levels of expression of the VEGF gene under hypoxic conditions. Strikingly, application of an IPAS antisense oligonucleotide to the mouse cornea induced angiogenesis under normoxic conditions, and unmasked hypoxia-dependent induction of VEGF gene expression in hypoxic cornea cells. These unexpected results indicate a novel mechanism for negative regulation of angiogenesis and maintenance of an avascular phenotype.
Hidden Marcov Model profiles3 for HIF homology were built using the HMMER 1,8,3 software21 from nucleotide sequences corresponding to the PAS domain of a selected number of bHLH/PAS factors. The model profiles were used to search mouse expressed sequence tag (EST) databases. An EST clone encoding a putative novel protein and containing a bHLH PAS motif was identified (Gene Bank accession #AA028416) and was subsequently obtained, sequenced and designated IPAS.
The nucleotide sequence for IPAS is provided at SEQ ID NO:2 (
pcDNA3 IPAS was constructed by inserting an EcoRl-Not I fragment from pT7T3D IPAS (Gene Bank accession #AA028416) into pcDNA3 (Invitrogen). The resulting vector was then used to subclone IPAS into the pCMV FLAG vector22, pGEX-4T-3 (Amersham-Pharmacia Biotec), pCMX GAL4, or pCMX VP-16, to create expression vectors for GST, GAL4, or VP16 fusion proteins, respectively. Full length IPAS cDNA was inserted in an inverted direction into pcDNA3, constructing an antisense IPAS expression plasmid.
IPAS-expressing HEPA cells (Hepa IPAS cells) were established by stable transfection of mouse hepatoma Hepalclc7 cells (ATCC) with pEFIRESpuro IPAS and puromycin (5 μg/ml) selection. In luciferase reporter gene assays, 0.5 μg of reporter plasmid and indicated amounts of expression plasmids were used for transfection by lipofection. Conditions for hypoxia or TCDD treatment of the cells have been previously reported16. Protein expression Was monitored in whole cell extracts by immunoblot assays using HIF-1α (Novus), HLF/EPAS1 (Novus), and FLAG epitope (Sigma) antibodies essentially as previously reported8,22.
IPAS mRNA expression was not detected in the wild-type cells (
HRE-specific DNA binding activity by the HIF-1α/Arnt heterodimeric complex was lower in nuclear extracts from either normoxic or hypoxic IPAS-expressing cells than in corresponding nuclear extracts from wild-type cells (
Six week-old C57B16/J healthy mice sacrificed by a lethal dose of CO2 and their primary corneal epithelial cells were isolated. The eyes were enucleated and the corneal tissue was dissected in DME medium supplemented with 10% bovine calf serum under a stereomicroscope. Tissue masses were placed onto a gelatin-coated tissue culture plate and incubated in the same media supplemented with 3 ng/ml human recombinant FGF-β. After incubation for 8 days, corneal epithelial cells were trypsinised, and single cell suspensions were used for subsequent assays.
Due to the structural similarity of IPAS to HIFs and the colocalization of IPAS and HIF-1α in mouse cornea the putative role of IPAS in regulation of transcriptional responses to hypoxia was investigated. A transient transfection assay was performed in HeLa cells (ATCC) using a hypoxia-response element (HRE) driven luciferase reporter gene in the absence or presence of transiently expressed IPAS. In the absence of IPAS, incubation of the cells under hypoxic (1% O2) conditions resulted in induction of reporter gene activity, reflecting the induced transactivation function of endogenous HIFs. Transient expression of IPAS reduced this hypoxia-inducible activation response (
Hypoxia-dependent activation of the reporter gene by coexpression of either HIF-1α (
Poly(A)+RNA samples (4.5 μg) were collected from a variety of C57B16 mouse tissues, Hepalclc7 and Hepa IPAS cells using the guanidiumthiocyanate method. The samples were purified using oligodT (Dynal). The purified samples were analyzed by northern blot analysis using 32P-labeled cDNA probes of mIPAS (nt 623-897), mPGK1 (nt 426-771), mVEGF3 (nt 24-466), mCYP1A1 (nt 874-1199), and mβ-actin (nt 930-1075).
The results of the analysis of mouse tissue samples demonstrated that IPAS was expressed predominantly in the eye and at lower levels in the cerebellum and the cerebrum. No expression was detected in other tested mouse tissues, indicating a tissue-restricted expression pattern of IPAS mRNA (
In situ hybridization assays of tissue samples from 8 week-old C57B16 mice were performed to characterize the spatial expression pattern of IPAS in the eye and cerebellum. The in situ hybridizations were conducted using 35S-labeled mIPAS or mHIF-1α antisense RNA probes according to known methods23.
Intense IPAS expression was observed in the epithelial cell layer of the cornea (
Nuclear extracts from either normoxic or hypoxic cells were prepared and analyzed by electrophoretic mobility shift assays as known in the art16. GST-IPAS or GAL4 fusion proteins spanning various fragments of HIF-1α were generated by translation either in the presence or absence of 35S-labeled methionine in rabbit reticulocyte lysate (Promega). Equal concentrations of 35S-labeled, in vitro translated Arnt, HIF-1α or IPAS were incubated with GST-IPAS or GAL4HIF-1α fusion proteins for 1 hour at room temperature. Afterward, the proteins were incubated with anti-GST (Amersham-Pharmacia Biotech) or anti-GAL4 (Upstate Biotechnology) antibodies coupled to Protein A-Sepharose (Amersham-Pharmacia Biotech) for 1 hour at room temperature. After brief centrifugation, coimmunoprecipitated proteins were analyzed by SDS polyacrylamide gel electrophoresis and autoradiography.
Coimmunoprecipitation assays were conducted to examine whether the inhibitory action of IPAS was mediated by direct interaction with HIF-1α or Arnt. Glutathione S-transferase-(GST-) IPAS fusion protein was coprecipitated with HIF-1α but not with Arnt, demonstrating specific physical interaction between IPAS and HIF-1α (
Mammalian two-hybrid assays employing a GAL4 fusion protein spanning the bHLH/PAS domain of HIF-1α as a bait demonstrated interaction with an IPAS-VP16 fusion protein. Consistent with the in vitro precipitation experiments, GAL-4-IPAS failed to show any interaction with Arnt-VP1 6 in vivo (data not shown). The IPAS/HIF-1α complex was inert with regard to binding to an HRE probe. The HRE binding activity of HIF-1α/Arnt heterodimer was impaired upon exposure to IPAS (
The cornea is an interesting study target because the transparency required for clear vision is present only with total avascularity. It is known that hypoxic conditions exist in the corneal environment following overnight closure of the eye during sleep14,15. The levels of hypoxia reached in the cornea would be sufficient to stimulate HIF-1α-dependent gene expression in other cell types. However, such a gene activation response and neovascularization of the cornea do not normally occur, suggesting a mechanism of negative regulation.
Analysis of VEGF mRNA expression in primary cultures of mouse cornea epithelium cells was conducted to ascertain whether IPAS plays such a role in negative regulation of VEGF expression in the cornea. A low but detectable level of IPAS mRNA expression under normoxic conditions was detected. Exposure of the cells to hypoxia for 24 hours resulted in enhanced IPAS mRNA expression levels (
Non-corneal mice tissues were exposed to hypoxia (6% O2) for 6 hours to assess hypoxia-induced IPAS expression regulation. Consistent with other experimental results (
In contrast to wild-type mouse Hepalclc7 cells16, primary cornea cells were transfected with an empty expression vector and demonstrated almost undetectable basal levels of VEGF mRNA expression. Hypoxia produced only a very modest induction response (
Primary cornea cells were transiently transfected with an antisense IPAS expression vector to down-regulate IPAS expression levels. The introduction of the antisense IPAS vector resulted in elevation of basal VEGF mRNA expression levels and significant hypoxia-inducible expression of the VEGF gene (
The mouse corneal angiogenesis assay was performed as previously reported24. Slow release micropellets of sucrose aluminium sulfate and hydron polymers containing 2.5 μg of phosphorothioate-coupled IPAS antisense (5′-TCACGCGCTG CAGCCCCAAC GCCAT-3′) (SEQ ID NO:3), sense (5′-ATGGCGTTGG GGCTGCAGCG CGTGA-3′) (SEQ ID NO:4), or scrambled oligonucleotides were implanted into corneal pockets of 6 week-old male C57B16/J mice. The full length IPAS antisense sequence is provided in SEQ ID NO:5. Alternate sequences of these or any other disclosed or claimed sequence may be employed. Alternate sequences include functional fragments and analogs, or entities having acceptable levels of homology with the specific sequence described. Construction and use of alternate sequences is known in the art.
Six mice and 12 corneas were used in each group. The vascular area of the corneas of all the mice was measured by slit-lamp stereomicroscopy on day S after pellet implantation, and statistically evaluated by Student's two-tailed t-test. In hypoxia experiments eight week-old mice were either kept at normoxia or exposed to normobaric hypoxia (6% O2) for 6 hours in an airtight chamber flushed with a mixture of nitrogen and room air.
Using similar methods, an analysis of the stimulation of blood vessel growth from the limbus region was recorded five normoxic days after implantation of micropellets. Significant (p<0.001 compared to sense or scrambled oligonucleotide controls) induction of neovascularization in the corneas of mice treated with the IPAS antisense oligonucleotide (
Approximately 1×106 wild-type Hepalclc7 or stably IPAS-expressing hepatoma cells were implanted subcutaneously in an 8-10 week old male immunoincompetent SCID mouse. Six mice were in the treated group and seven mice were in the control group. Primary tumors were measured using digital calipers on the days indicated. Tumor volumes were calculated according to the formula: width2×length×0.52 as is common in the art24. At day 18 after implantation, tumor tissues were resected and fixed with 4% formalin in phosphate-buffed saline for 24 hours. Tissues were imbedded in paraffin and stained with a rat anti-mouse antibody against CD31 antigen24. Positive signals were counted under a light microscope in at least 6 random fields at 40× magnification.
The role of IPAS in negative regulation of angiogenesis was evaluated by determining both the growth rates and vascular density of the tumors formed following implantation. As shown in
An organism would be treated with antisense IPAS by any means appropriate and, if necessary, including any pharmaceutically acceptable carrier or adjuvant. Treatment may include such methods as topical application, injection, infusion, gene therapy, use of liposomes or controlled release mechanisms, and a variety of any and all other methods determined appropriate by the practitioner. Antisense IPAS would effectively inactivate IPAS and prevent conditional negative regulatory strategy. This would occur because IPAS would be prevented from forming a nonfunctional complex with HIF-1α. Such a mechanism is depicted in
Treated regions of the organism may preferably include tissues exposed to hypoxia, such as the cornea or ischemic heart tissue. Following treatment, HIF-1α activity would no longer be suppressed and angiogenesis would proceed. Conditions that may benefit from treatment with IPAS antagonists according to the present invention include, but are not limited to, coronary heart disease, wound healing, stroke, and diabetic ulceration.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SE02/02198 | 11/28/2002 | WO |
Number | Date | Country | |
---|---|---|---|
60333513 | Nov 2001 | US |