Electric arc furnaces are used to melt different metallurgical elements such as iron coming from scrap, iron ore, etc. The metal is melted by intense heat created by an electrical arc produced between an electrode and the scrap or ore. The electric arc furnace is basically composed of a shell to retain the scrap and melted metal; a set of electrodes to create the arcs needed to melt the metal; a set of actuators, which are controlled by a regulator, to control the electrodes distance from the scrap; and a large current power supply to supply the arc currents. When the melting is completed, impurities that float to the surface are skimmed or scraped from the surface and the liquid metal is poured from the shell for further processing.
The most important aspect of arc-furnace operation is productivity optimization, which includes energy efficiency. Thus, an electric arc-furnace is operated to produce the greatest amount of metal using the least amount of energy possible. The primary source of energy in an electric arc furnace is produced by the utilization of electricity. This electrical energy is complemented by chemical energy. Chemical energy may be derived from but not limited to a chemical reaction, (CO+O=CO2), or by the burning of oxygen or natural gas. A good electric arc furnace operation will balance the total energy input for production, efficiency and cost. Any furnace problems such as electrical arc instability or electrode degradation adversely affect productivity by increasing electricity usage and/or processing time. Monitoring an electric arc furnace to insure that it is operating optimally increases the productivity of the furnace. This monitoring typically involves monitoring an amount of current flowing in an electrode. If the monitored current flow indicates a non-optimal operation, the controlling regulator's operation is then changed based upon the measured value of the electrode current. Unfortunately, simply altering the regulator's performance only compensates for the problem without addressing or identifying the underlying root cause of the problem. Therefore, in view of the above discussed limitations of the prior art, what is needed is an improved method and system for monitoring an arc furnace's performance that increases productivity without requiring substantial increases in labor costs.
An embodiment of the present invention is directed toward a method of optimizing operation of an electrical arc furnace. In accordance with the method, a current flowing through a furnace electrode is monitored. A regulator signal, hydraulic valve spool position, hydraulic fluid pressure, and electrode mast position are monitored simultaneously with the electrode current on each of the electrodes. The monitored values are correlated to identify a optimal furnace operating condition and an operating parameter of the arc furnace is altered based upon the correlation. Most preferably, regulator signal is altered based upon the correlation. If any of the monitored values satisfies an action threshold, an action associated with the action threshold is performed.
Another embodiment of the present invention is directed toward a device for monitoring operation of an electrical arc furnace. The device includes an electrode current monitor for monitoring a current in an electrode of the electrical arc furnace. A furnace regulator monitor monitors a regulator signal produced by a furnace regulator. The furnace regulator signal and the electrode current are monitored simultaneously such that individual values of the electrode current can be correlated to individual values of the regulator signals with respect to time. A hydraulic valve spool position monitor, a hydraulic fluid pressure monitor and an electrode mast position monitor are also included in an alternative embodiment for simultaneously monitoring of hydraulic value spool position, hydraulic fluid pressure, and electrode mast position for each electrode of the electrical arc furnace. An operating parameter or setting such as regulator signal of the arc furnace is altered based upon the correlation. An alarm system determines if any of the monitored values satisfies an action threshold and produces an alarm associated with the threshold if the threshold is satisfied.
Yet another embodiment of the present invention is directed toward a method of monitoring an electric arc furnace operation. In accordance with the method a first furnace parameter is monitored and a second furnace parameter is simultaneously monitored. The method then determines if a value of the first furnace parameter indicates sub optimal furnace operation in view of a value of the simultaneously monitored second furnace parameter. Preferably, the first furnace parameter is an electrode current in an electrode of the electrical arc furnace and the second furnace parameter is a regulator signal produced by a regulator of the electrical arc furnace. In addition, a third furnace parameter may be simultaneously monitored to determine if the first, second and third furnace parameters collectively indicate sub optimal furnace operation. The number of monitored parameters is not limited and can cascade as far as required to determine the optimal electric arc furnace setting or operation.
Referring now to
As discussed above with respect to
Referring now to
By monitoring the furnace operating parameters in a simultaneous fashion, changes in one parameter, such as electrode current, can be correlated with changes in other parameters, such as hydraulic pressure, to identify problems that cannot be accurately diagnosed by examining only one parameter in isolation. For example, a particular hydraulic pressure may only indicate a problem only when the pressure occurs in connection with a particular electrode current. Thus, simultaneous monitoring of the arc furnace's regulation system operating parameters allows the parameter values to be correlated such that the root causes of problems can be identified and corrected for as opposed to just compensated for as in prior art systems.
Thus, although there have been described particular embodiments of the present invention of a new and useful Regulation System Analysis Method, it is not intended that such references be construed as limitations upon the scope of this invention except as set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5255285 | Aberl et al. | Oct 1993 | A |
6603795 | Ma et al. | Aug 2003 | B2 |