1. Field of the Invention
This invention relates generally to voltage/current driver/regulator circuit design and, more particularly, to the design of a regulator circuit operating with multiple supply voltages.
2. Description of the Related Art
A variety of driver circuits exist today for use in integrated circuits and systems for driving a signal line or a bus. Oftentimes driver circuits are configured to enable bus transactions between a source device and a target device, and feature complex designs in order to meet various system specifications. Typically, these driver circuits may be relatively expensive to build. Other driver circuits may feature simple or simpler designs, failing, however, to accurately control output currents and output voltages, while also having slow rise and fall times.
One variety of driver circuits generally comprises a relatively low power circuit that drives, or controls, a higher power device, which may be part of a power driving stage for a load. One example might be a load that is a motor, such as a brushless motor, that provides the motive force for a fan. Fans are oftentimes used in computer systems to evacuate hot air from enclosures to prevent certain circuit components, such as central processing units (CPUs) from overheating. Linear driver circuits are therefore often used to drive the fan motor, and/or controlling the rotational speed of the fan in a wide variety of computer systems.
Linear drivers are also a feature of output stages in many amplifiers—whose basic function is to produce an output signal with a power that is a multiple of the power of an input signal—since many applications call for an output waveform that faithfully reproduces the shape of the input signal while magnifying its voltage and/or current in a linear fashion. In order to increase the efficiency of an amplifier while maintaining a high degree of linearity, a class G design may be employed, which involves changing the power supply voltage from a lower level to a higher level when larger output swings are required.
A variety of methods and solutions exist for implementing class G operation in an efficient manner. The simplest solution typically involves a single class AB output stage connected to two power supply rails by a diode, or a transistor switch. In this solution, under most circumstances, the output stage is connected to the lower supply voltage, and automatically switches to the higher rails for large signal peaks. Another approach features two class AB output stages, each stage connected to a different power supply voltage, with the signal path determined by the magnitude of the input signal. Using two power supplies improves power efficiency enough to allow significantly more power for a given size and weight.
Class G amplifiers typically include current blocking diodes configured to prevent driving current into a lower voltage supply when the amplifier output exceeds the lower supply voltage. While this provides effective protection, it also places a limit on the efficiency of the contribution provided by the lower voltage power supplies to the overall amplifier output. Some power will unavoidably be dissipated in the diode as a result of the voltage drop across the diode, any time a lower voltage supply is contributing to the overall output of the amplifier. In addition, a power device typically included in each output stage to control the flow of current to the load will dissipate power that is equal to the load current multiplied by the difference between the supply voltage and the amplifier output. This power would be wasted any time the supply contributed to the amplifier output.
When a power supply is contributing maximum current to the amplifier output, the output device may be operating in either saturation mode or linear mode, generally with a voltage drop in the tenth volt range (typically few tenths of a volt). When the voltage drop across the output device is combined with the voltage drop across the diode when using a lower voltage supply, the total difference between the supply voltage and the amplifier output may be around one volt. While such a voltage drop and corresponding inefficiency may be acceptable in relatively high voltage amplifiers where the output is in the 10V range (typically tens of volts), integrated circuit amplifiers for low-power applications are typically designed to operate with minimum supply voltages below two volts, and such a drop in output stage voltage would limit the amplifier's maximum efficiency to less than fifty percent.
One solution for the design of more efficient class G amplifiers is described in U.S. Pat. No. 6,838,942 (Efficient class-G amplifier with wide output voltage swing). According to this solution, the amplifiers include multiple output stages, each associated with a distinct supply voltage, the amplifiers thereby operating off of multiple supply voltages. Each output stage contributes current to the output of the amplifier over a range of amplifier output voltages, with possibly overlapping voltage ranges. Each output stage also contributes current until the amplifier output voltage reaches the supply voltage associated with that output stage. When the amplifier output voltage is close to the supply voltage associated with an output stage, both that output stage and the output stage associated with the next highest supply voltage may contribute to the amplifier output.
Certain drawbacks of this solution are apparent, however. For example, current may flow from a high supply to low supply during fast signal transients, causing extra power dissipation. This may occur due to the pass devices to the two supplies conducting simultaneously, in addition to the slow speed of the control loop. Another issue may be the less than optimal power saving due to a transition region from one supply to the next supply having a value in the 100 mV range (typically hundreds of mV). Finally, the feedback loop can be very difficult to stabilize.
Other corresponding issues related to the prior art will become apparent to one skilled in the art after comparing such prior art with the present invention as described herein.
A voltage regulator (or driver) circuit may be designed with the primary goal to save power. The regulator circuit may be coupled to at least two power supplies configured to provide a supply voltage to the regulator circuit. In order to save power, the regulator circuit may take current from the lowest possible supply according to the value of an input signal, while maintaining an accurate output level.
In one set of embodiments, a voltage regulator, e.g. a linear regulator may be configured to drive a load from one of two pass devices, which may be pass transistors, e.g. PMOS devices. The two pass transistors may each be connected to a respective one of two different power supplies (voltage supplies). The voltage regulator may also be configured to receive an input voltage to set the output voltage, and may include an error amplifier to compare the input voltage to the output voltage to control the output voltage through a feedback loop that may be configured to set a fixed gain. The regulator may further include a selector circuit having transistors configured to enable selection of one of the pass transistors. The pass transistors may be configured to not operate at the same time, with only one pass transistor selected at a time. The decision to switch between the two pass devices, and thus determining which of the two power supplies is used in generating the output voltage, may be made by a comparator configured to compare the input voltage with a control voltage that has a magnitude that is just below the magnitude of the lower one of the two power supplies.
In another set of embodiments, a voltage regulator may be configured to receive an input voltage, and generate and provide a regulated output voltage as a function of the input voltage. Each one of two or more voltage supplies may have a different value and may power a different corresponding driver configured within the voltage regulator. Each different driver may have a driver output coupled to the output terminal of the voltage regulator to drive the regulated output voltage when the given driver is active. A voltage generator circuit, which may be configured within the voltage regulator, may be operable to generate a plurality of control voltages, each control voltage corresponding to a respective one of the voltage supplies, with the magnitude of each control voltage set just below the magnitude of the voltage supply to which it corresponds. The voltage regulator may also include a switching circuit configured compare the input voltage with each one of the control voltages, and enable one of the drivers to be active while keeping all other drivers inactive at any given time, based on the result of the comparisons. The driver may be selected and enabled based on which given control voltage of all the control voltages has a value that is closest to the value of the input voltage without being lower than the value of the input voltage. The enabled driver would then be the driver powered by the power supply corresponding to the given control signal.
A method for providing a regulated output signal using multiple power supplies may include powering each one of two or more drivers using a different corresponding power supply, each power supply having a different value (magnitude). A set of control voltages may be generated, with each control voltage corresponding to a respective power supply, and having a value just below the value of the power supply to which it corresponds. The method may further include receiving an input voltage, comparing the input voltage with each control voltage, and enabling one of the drivers to become active to operate as an active driver, according to the results of the comparison of the input voltage with each control voltage. When enabling one of the drivers, all other drivers may be kept inactive, and the regulated output signal may be provided as a function of the input signal using the active driver. The method may include determining which driver to enable by selecting the driver that is powered by the power supply whose corresponding control voltage is closest in value to the input voltage (when compared with the other control voltages) without being lower than the value of the input voltage.
The foregoing, as well as other objects, features, and advantages of this invention may be more completely understood by reference to the following detailed description when read together with the accompanying drawings in which:
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present invention as defined by the appended claims. Note, the headings are for organizational purposes only and are not meant to be used to limit or interpret the description or claims. Furthermore, note that the word “may” is used throughout this application in a permissive sense (i.e., having the potential to, being able to), not a mandatory sense (i.e., must).” The term “include”, and derivations thereof, mean “including, but not limited to”. The term “coupled” means “directly or indirectly connected”.
As used herein, the “magnitude” of a power supply refers to the magnitude of the supply signal provided by the power supply. For example, the magnitude of a voltage supply refers to the magnitude of the voltage signal provided by the voltage supply. E.g. a voltage supply having a magnitude of 5V indicates that the voltage supply is configured to provide a 5V supply rail and/or supply voltage. As also used herein, a “ratio” of a current mirror device refers to a ratio between the current conducted by the input branch of the current mirror and the current conducted by the output, or mirror branch of the current mirror. Thus, a current mirror having a “very high” ratio may indicate that the ratio of the input current vs. the mirrored current is approximately 1:1000. Furthermore, the “size” of a transistor or transistor device may refer to the channel width to channel length ratio of the transistor device. Thus, a “large” transistor may have a channel width to channel length ratio of around 10000/0.35. Finally, as used herein, the terms “driver circuit” and “regulator circuit” are meant to refer to the same type of circuit, and are used interchangeably.
One goal when designing a driver circuit, e.g. a voltage driver, may be to save power. One typical implementation of a driver circuit is a linear driver used for driving, for example a fan, with the linear driver configured on an integrated circuit (IC). If the driver circuit were connected to two power supplies, in order to save power the regulator circuit may take current from the lowest possible supply, while maintaining an accurate output level.
Drivers 214 and 216 may be configured in regulator 200 in such a way that they do not operate at the same time, with only one of the two drivers selected at a time. The decision to switch between drivers 214 and 216, and thus determining which of the two power supplies—VddH or VddL—is used in generating Vout, may be made by a comparator 204 configured to compare Vin with a control voltage Vc that may have a magnitude that is just below the magnitude of VddL. As configured in the embodiment of
Pass transistors 318 and 324 may each be very large, their channel width to channel length ratio being on the order of W/L=10000/0.35, for example. Configuring large devices may facilitate achieving the high currents desired in the mirror branches of the pass transistors (318 and 324). It should be noted that while in this embodiment certain numerical values and ranges are provided for the ratio of the current mirrors and the size of pass transistors 318 and 324, other values may be used according to the desired size of the currents conducted by pass transistors 318 and 324 (mirror branches), and PMOS devices 312 and 320 (input branches).
In one set of embodiments, the n-well of the transistor devices comprised in driver 216 (in this case the n-well of PMOS devices 312 and 318) may be biased to a voltage level corresponding to the highest one of the magnitude of VddL and the magnitude of Vout, to avoid any current flowing from node 350 (where Vout is provided) to the low power supply (or supply rail) VddL. NMOS devices 314 and 322 may be configured as switches within selector circuit 218 to select the appropriate pass transistor from the low power driver 216 or the high power driver 214. In one set of embodiments, the respective gains of the current mirrors configured in drivers 216 and 214, respectively, may be set to the same value, to insure that the feedback loop from node 350 to error amplifier 206 is not affected by switching between drivers 216 and 214. This may facilitate easy stabilization of the feedback loop. Selector circuit may also include logic gate (NOR) 308 and NMOS device 316 to implement the switching between drivers 216 and 214, as well as regulating the value of Vout based on Vin, as controlled by error amplifier 206 via the feedback loop from node 350. In embodiments where an attenuator 210—constituting resistors 326 and 328 in the embodiment shown—is used in the feedback loop (effecting a gain of Vout/Vin being greater than 1), the level of control voltage Vc may need to be equally attenuated, because it is Vin and not Vout that is compared to Vc by comparator 204.
Referring again to
It should be noted, that in current drivers and/or regulators using multiple power supplies, (supply rails), there may be current flow from the high power supply to the low power supply during fast signal transitions, resulting in additional power dissipation. This current flow is most often the result of the pass devices (pass transistors)—comprised in the drivers powered by the high power supply and low power supply, respectively—simultaneously conducting current. Additionally, this behavior may also result from a potentially slow response of the control loop. A regulator circuit built in accordance with principles of the present invention, such as regulator circuit 200 shown in
Consequently, power saving in current driver/regulator circuits using multiple power supplies/power rails may not be optimal due to the characteristics of the transition region when switching from one supply to another.
In addition, in current regulators/drivers/amplifiers that use multiple supplies, it may be problematic to stabilize the feedback loop, because the gain of the loop and phase shift may change when transitioning/switching from one supply rail to the next. When a driver/regulator circuit is designed and built according to principles of the present invention, it is possible to achieve a slight and sudden change in the gain and phase by properly dimensioning the components of the regulator circuit, thereby reducing and/or eliminating oscillations around the transition point.
It should be noted that while the embodiments presented herein are configured with one low supply rail and one high supply rail, other embodiments may include more than two supply rails, each supply rail possibly having a different value (magnitude) from all of the other supply rails. For example, in one set of embodiments, a regulator/driver circuit may include an input terminal configured to receive an input voltage and an output terminal configured to provide a regulated output voltage as a function of the input voltage. Each one of a plurality of power supplies may be configured to have a different magnitude and to power a different corresponding driver. Each different given driver may have a driver output coupled to the output terminal of the regulator circuit to drive the regulated output voltage when the given driver is active. The regulator circuit may also include a control voltage generator circuit configured to generate a plurality of control signals, with each control signal corresponding to a respective one of the power supplies, with the magnitude of each control signal set just below the magnitude of the corresponding power supply. The regulator/driver may further include a selector circuit configured to enable one of the drivers to be active while keeping all other drivers inactive at any given time, based on a comparison of the input voltage with each one of at least a subset of the control voltages. In this manner, only one of the drivers is enabled to drive the output voltage, the selection based on where the value/magnitude of the input voltage falls with respect to the magnitude of the various different power supplies used to power the drivers.
For example, the embodiment shown in
Further modifications and alternative embodiments of various aspects of the invention may be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5422591 | Rastegar et al. | Jun 1995 | A |
5739705 | John | Apr 1998 | A |
6304069 | Tatsumi | Oct 2001 | B1 |
6324426 | Thompson | Nov 2001 | B1 |
6366061 | Carley et al. | Apr 2002 | B1 |
6388469 | Hunt et al. | May 2002 | B1 |
6396169 | Voegeli et al. | May 2002 | B1 |
6686600 | Sadayama | Feb 2004 | B2 |
6826096 | Pekny et al. | Nov 2004 | B2 |
6833760 | Aude | Dec 2004 | B1 |
6838942 | Somerville et al. | Jan 2005 | B1 |
6864600 | Malinovitch | Mar 2005 | B2 |
6944843 | Bansal | Sep 2005 | B2 |
7205682 | Kuramori | Apr 2007 | B2 |
7254002 | Aemireddy | Aug 2007 | B2 |
20030122429 | Zhang et al. | Jul 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20080164765 A1 | Jul 2008 | US |