The present invention relates to a pressure regulator for use with a supply of pressurized gas such as a breathable gas, etc.
It has been known to use coil springs in fluid pressure regulators to counter the force of the regulated pressure. Also, it has been known to use Belleville springs in fluid pressure regulators. Typically, the Belleville spring is used with a coil spring to produce an approximately zero spring rate. In order to do so, the Belleville spring is loaded until it reaches a negative spring rate and this rate is combined with the positive spring rate of the coil spring which results in a combined spring rate that approximates zero.
What is needed is a spring combination that provides a nearly zero spring rate over a range of deflections such that there is less variation in regulated pressure with respect to changes in flow and less variation in flow with respect to changes in pressure.
The present invention meets the above-described need by providing a plurality of Belleville-type springs in a stacked, series configuration arranged to obtain a nearly zero spring rate over a range of deflections.
Fluid pressure regulators typically utilize springs to counter the force of the regulated pressure, and the ability to accurately determine the force of the spring provides for accuracy in the regulated pressure. At lower spring rates (load/deflection), there is less change in force over a given deflection. Accordingly, there is less variation in regulated pressure with respect to changes in flow and less variation in flow with respect to changes in pressure.
The present invention utilizes a plurality of Belleville-type springs arranged in such a fashion to obtain a nearly zero spring rate over a range of deflections.
A single Belleville spring can produce a near zero spring rate over a relatively small region of deflection. As shown in the following graph, a single Belleville spring can be designed to produce a load deflection curve wherein in the range of approximately 0.047 to 0.06 inches (0.013 distance) of deflection, the Belleville spring in this example achieves a nearly zero spring rate at a fixed load such as a 60 lb load.
By stacking two similar springs in series, the region in which the rate of the two series springs achieve a near zero rate is extended to approximately double, while maintaining the load of a single spring. Likewise, three springs in series would further extend the near zero rate region (see graph below) and four would extend the region even more, while maintaining the load of a single spring.
By arranging Belleville springs in series, a near zero rate region of large enough distance can be obtained to utilize the Belleville spring series stack in a pressure regulating valve. As shown in
By providing the Belleville springs in a series arrangement, two features are obtained in a pressure regulating valve. First, regardless of the distance the pressure regulating valve has to open, the load on the Belleville spring stack remains the same provided the mechanical travel of the Belleville spring stack stays within the range of nearly zero spring rate. This feature has the effect of keeping the regulated pressure of the pressure regulating valve nearly constant with respect to opening the valve to provide additional flow. Second, a large force can be provided in a very small height.
The compression load that the Belleville spring stack achieves over its near zero rate region may not be repeatable enough for it to be utilized solely in a pressure regulator. Additional compressing or unloading of the Belleville spring stack to achieve a higher or lower load may cause the stack to be compressed outside of its near zero rate region.
Accordingly, in order to provide a fine adjustment for the total spring force, a low rate spring may be utilized in combination with the Belleville spring stack. The second low rate spring may be a coil spring.
In the situation where both springs are used, both the low rate compression coil spring and the Belleville spring stack act upon the pressure sensing element of the pressure regulating valve. The compression of each spring (Belleville stack and low rate compression spring) may be separately controlled. The Belleville spring stack may be compressed to its near zero spring rate region by assembly of close tolerance parts. Alternately, the Belleville spring stack may be set initially by means of a screw or other adjustable member.
The compression of the low rate compression coil spring may be adjusted through the use of a set screw so that precise regulated pressure can be achieved. The percentage of the load counteracted by the Belleville spring stack is much greater than the percentage of the load counteracted by the compression coil spring. Therefore, adjustment of the compression coil spring provides only a fine adjustment of the regulated pressure.
Turning to
The regulated pressure travels through an inlet passage 26 into low pressure chamber 110. This lower regulated pressure is applied to the interface between the low pressure body 160 and the indexer 43 (
Turning of the knob 50 opens the on/off valve 25 through rotation of shaft 60. The knob 50 is also coupled to the indexer 43 by means of the engagement of the gears 53 attached to the knob 50 with gear 56 attached to or formed integrally with the indexer 43. Accordingly, turning of the knob 50 also causes an orifice plate 70 retained by the indexer 43 to rotate. Rotation of the orifice plate 70 causes the flow setting to switch. The lower pressure gas from chamber 110 passes through a calibrated orifice in the orifice plate 70 to provide a selected flow rate to the outlet 180 as will be evident to those of ordinary skill in the art based on this disclosure. The arrangement of the indexer 43, orifice plate 70, and gear 56 is described in greater detail in U.S. patent application Ser. No. 11/072,156 which is assigned to the assignee of the present invention and is incorporated herein by reference. It is to be understood that the Belleville spring stack of the present invention may also be used with regulators having other outlet configurations as will be evident to those of ordinary skill in the art based on this disclosure.
The Belleville spring stack 150 and the low rate compression spring 153 act on the piston 155 which borders the low pressure chamber 110 to regulate the pressure. As set forth above the majority of the load is counteracted by the Belleville spring stack 150 and the fine adjustment is accomplished by the set screw 156 on the low rate compression spring 153. The compression spring 153 may be configured to work with or against the Belleville springs. In the example shown, the spring works with the Belleville springs. At the position in the spring stack 150 where the edge of one concave spring section meets the edge of another Belleville spring which is concave in the opposite direction, a large flat disk 157 is disposed between the Belleville springs. The disk 157 prevents alignment issues with opposed concave Belleville springs and provides performance as predicted by testing of the individual spring.
While the invention has been described in connection with certain embodiments, it is not intended to limit the scope of the invention to the particular forms set forth, but, on the contrary, it is intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
The present application claims benefit of U.S. Provisional Patent Application No. 60/643,098 filed on Jan. 11, 2005, entitled “Regulator with Selectable Flow Rates and Belleville Springs,” which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60643098 | Jan 2005 | US |