Reinforced adhesive backing sheet

Information

  • Patent Grant
  • 10299966
  • Patent Number
    10,299,966
  • Date Filed
    Friday, December 19, 2008
    15 years ago
  • Date Issued
    Tuesday, May 28, 2019
    5 years ago
Abstract
A backing sheet for use in a wound dressing, comprising a semipermeable continuous film laminated to an adhesive-coated apertured layer, wherein the apertured layer comprises a solid substrate coated with a medically acceptable adhesive. Also provided is a method of making a backing sheet for use in a wound dressing, said method comprising the steps of: forming an adhesive-coated apertured layer by coating a medically acceptable adhesive onto an apertured solid substrate, followed by laminating the adhesive-coated apertured layer to a semipermeable continuous film.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a U.S. National Stage Patent Application of International Application No. PCT/GB2008/004216, filed Dec. 19, 2008, which claims priority to GB 0725215.8, filed on Dec. 24, 2007, both of which are incorporated herein by reference in their entirety.


STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable


REFERENCE TO A “SEQUENCE LISTING

Not Applicable


FIELD OF THE INVENTION

The present invention relates to a reinforced adhesive backing sheet, to methods of making such backing sheets, and to wound dressings comprising such backing sheets.


BACKGROUND OF THE INVENTION

Many wound dressings comprise a wound contacting portion and a microorganism-impermeable backing sheet that covers the wound contacting portion. The wound-contacting portion, which may comprise several layers, is typically absorbent and may be therapeutic. In use, the backing sheet holds the wound contacting portion of the dressing in contact with the wound, blocks the ingress of microorganisms to the wound, and also prevents leakage of wound exudates from the dressing. In certain embodiments, the backing sheet is substantially coterminous with the wound contacting portion. In other embodiments, the backing sheet is larger than the wound contacting portion, such that a margin having width 1 mm to 50 mm, suitably 5 mm to 20 mm, extends around the wound contacting portion to form a so-called island dressing.


Conventional polymers for forming the backing sheet include polyurethanes and poly alkoxyalkyl acrylates and methacrylates such as those disclosed in GB-A-1280631. Typically, the backing sheet comprises a continuous sheet of a high density blocked polyurethane foam that is predominantly closed-cell. Well known backing sheet materials include the polyurethane films available under the Registered Trade Mark ESTANE.


The backing sheet is frequently coated with a medically acceptable adhesive to bond the backing sheet to the wound contacting portion, and/or to the skin of a patient around the wound. For example, in typical embodiments the backing sheet is adhesive coated at least in a marginal region thereof. As previously described, the backing sheet suitably extends beyond the outer edges of the wound contacting sheet to provide an adhesive-coated margin around the wound contacting sheet for attachment of the dressing to skin around a wound. The adhesive material can be moisture vapour transmitting, for example it may be a hydrogel adhesive. However, the more commonly used pressure-sensitive adhesives are not moisture vapour transmitting. These adhesives are typically printed onto the backing sheet in a patterned (discontinuous) fashion to allow passage of water vapour through the adhesive layer. The step of printing the adhesive adds expense and complexity to the manufacturing process.


Existing adhesive-coated backing sheets are generally quite thick. This thickness is needed in order to give the sheet sufficient stiffness for convenient handling prior to application to the wound. The adhesive layer is also typically quite thick, for example 100 to 250 g/m2. Where a polyurethane foam backing sheet is used, the adhesive layer should be continuous in order to provide the necessary barrier to microorganisms. These thick materials are relatively expensive, and render the desired oxygen- and moisture-permeability difficult to achieve.


Accordingly, a need exists for adhesive backing sheets for use in wound dressings that combine the advantages of low cost, sufficient stiffness for easy handling, and high moisture vapour permeability.


SUMMARY OF THE INVENTION

In a first aspect, the present invention provides a backing sheet for use in a wound dressing, comprising a semipermeable continuous film laminated to an adhesive-coated aperture layer, wherein the aperture layer comprises a solid substrate coated with a medically acceptable adhesive.


In a second aspect, the present invention provides a wound dressing comprising a backing sheet according to the first aspect.


In a third aspect, the present invention provides a method of making a backing sheet for use in a wound dressing, said method comprising the steps of: forming an adhesive-coated apertured layer by coating a medically acceptable adhesive onto an apertured solid substrate, followed by laminating the adhesive-coated apertured layer to a semipermeable continuous film.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a detail view of part of a backing sheet according to the invention;



FIG. 2 shows a perspective view of a wound dressing according to the invention; and



FIG. 3 shows a schematic view of a manufacturing process according to the invention.





DETAILED DESCRIPTION OF THE INVENTION

The adhesive-coated apertured layer provides stiffness to the backing sheets of the present invention, so that thinner and thus more permeable continuous backing films can be used while maintaining acceptable handling properties. In addition, the lamination of the adhesive-coated apertured layer to the continuous film is simpler than many conventional adhesive coating processes, and allows smaller amounts of adhesive to be used. The adhesive-coated layer is apertured. That is to say, there are apertures in the adhesive-coated layer that are substantially adhesive-free and thereby maintain the moisture- and gas-permeability of the backing sheet, in particular when the adhesive is a conventional medically acceptable pressure sensitive adhesive (i.e. not a hydrogel adhesive).


The term “backing sheet” refers to a flexible, sheet material having a structure that is substantially continuous (on a cm scale) so that it can be cut to size to form the outer layer of a wound dressing.


The terms “laminated” and “laminating” refer to bonding of the apertured layer to a surface of the continuous film. Suitably, the bonding is adhesive bonding by means of the adhesive coating on the apertured layer. Suitably, the bonding of the apertured layer to the continuous film is substantially solely by means of said adhesive coating. Suitably, the apertured layer is bonded to the backing sheet over substantially the whole of one side of the apertured layer, i.e. at least about 90% of the area of the apertured layer on one side, is bonded to the backing sheet. Suitably, the continuous film and the apertured adhesive-coated layer are substantially coterminous and bonded together across the whole of their respective areas. This results in a unitary, laminated backing sheet. The laminated backing sheets of the present invention are therefore quite different from conventional wound dressings that may have an apertured, adhesive-coated top sheet bonded to a backing sheet around a margin.


The terms “coated” and “coating” refer to application of a layer of adhesive to the apertured substrate. Suitably, substantially all surfaces of the solid substrate are coated with the same adhesive, for example by dipping the substrate in a liquid adhesive. In other embodiments, front and back surfaces of the solid substrate are coated with adhesive, for example by spraying. Suitably, substantially the whole of the side of the apertured substrate (excluding the apertures) facing the continuous film is coated with adhesive, so as to achieve bonding between the continuous film and the apertured sheet across the whole of that side of the apertured substrate. However, the apertures of the coated substrate are not completely filled with the adhesive, whereby apertures remain in the coated substrate to allow passage of gases.


Suitably, the semipermeable continuous film has a thickness in the range of from about 10 micrometers to about 200 micrometers, for example from about 20 micrometers to about 75 micrometers. In one embodiment, the semipermeable continuous film will have a moisture vapor transmission rate (MVTR) of about 300 to about 5000 g/m2/24 hrs, for example about 500 to about 2000 g/m2/24 hrs at 37.5° C. at 100% to 10% relative humidity difference and 32° C. by ASTM Standard E96-80. Suitable films include Smith & Nephew extruded medical films (EU31, EU65, EU93, EU110, PBA73, PBA105, BNX75) all of which are Polyurethane or polyurethane blends except for BNX75, which is a Polyethylene. Further suitable films are provided by Omniflex USA manufactured from TPU, and breathable films such as Inspire 2301 from Intellicoat and Amitel VT3801 from DSM. Suitable foam backing layers are provided by SCAPA and Rogers Corp.


The solid substrate of the apertured layer is suitably a layer or sheet having a low basis weight and thickness. For example, the basis weight may be from about 10 gsm to about 500 gsm, typically from about 20 gsm to about 300 gsm. In certain embodiments, the substrate has apertures arranged in a regular pattern, whereby after coating the apertures retain sufficient open (adhesive-free) area to mimic the use of a printed adhesive layer and allow transport of moisture vapour through the backing layer. Suitably, the apertured layer is laminated across substantially the whole of one surface of the film layer. The adhesive suitably also bonds the apertured layer to the film layer. Suitably, the backing sheet according to the present invention consists essentially of the film layer and the apertured adhesive-coated layer.


The solid substrate layer may for example be an apertured textile material, which may be woven or nonwoven, such as a gauze or an apertured nonwoven textile scrim. Suitable lightweight nonwovens are spunbonded webs or lightweight woven scrims such as those used in swabs.


In other embodiments the solid substrate layer may be a unitary thermoplastic layer, for example a network formed for example by extrusion or molding, or a perforated film produced for example by perforation of continuous films. Suitable substrates of this type include extruded films supplied by Smith and Nephew (CB15, CE15, SN09, H514, H518, H624 and PT20 all of which are Polyethylene except for PT20, which is Polypropylene). Also suitable are the apertured films and extruded nets from Delstar Inc. available under the Registered Trade Marks DELNET and NALTEX. The percent open area of the apertures in the apertured substrate layer is may be from about 1% to about 99%, for example from about 25% to about 90%, suitably from about 30% to about 80%.


The medically acceptable adhesive may be a hydrogel adhesive, but suitably it does not comprise a hydrogel. Suitably, the pressure-sensitive adhesive may be based on acrylate ester copolymers, polyvinyl ethyl ether and/or polyurethane. Polyurethane-based pressure sensitive adhesives are preferred. Pressure sensitive adhesives typically comprise an elastomer dissolved or dispersed in a non-aqueous solvent. Suitable pressure-sensitive adhesives are the polyurethane adhesives available under the registered trade mark LEVGEL. Also suitable are silicone-based adhesives available from Dow Coming. The adhesive may be applied to the apertured solid substrate layer via any method known on the art. The adhesive may be dissolved or dispersed in a suitable solvent prior to coating onto the substrate. The coated substrate may be squeezed, for example between rollers, after dipping in a bath of the adhesive (and optional solvent) to remove excess adhesive. The rollers may be profiled to provide the adhesive-free apertures in the substrate. The basis weight of the adhesive is regulated by the choice of substrate material, the concentration and viscosity of the adhesive bath in which the network is dipped, and the compression conditions after dipping. Suitably, the basis weight of the adhesive is less than about 100 gsm, for example from about 25 to about 75 gsm. The percent open (adhesive-free) area of the apertures in the adhesive-coated apertured layer is typically from about 1% to about 90%, for example from about 10% to about 60%, suitably from about 25% to about 75%.


In one embodiment, the adhesive backing sheets of the invention will have a moisture vapor transmission rate (MVTR) of about 300 to about 5000 g/m2/24 hrs, for example about 500 to about 2000 g/m2/24 hrs at 37.5° C. at 100% to 10% relative humidity difference and 32° C. by ASTM Standard E96-80. It has been found that such moisture vapor transmission rates allow the wound under the dressing to heal under moist conditions without causing the skin surrounding the wound to macerate.


Suitably, the maximum uncompressed thickness of the backing sheet according to the invention is from about 0.1 mm to about 2 mm, suitably from about 0.2 mm to about 1 mm.


The wound dressing according to the second aspect of the invention may comprise, consist essentially of, and/or consist of the backing sheet according to the invention, optionally with a protective cover sheet covering the surface of the adhesive-coated apertured layer opposite the continuous semipermeable film.


More usually, the wound dressing according to the invention further comprises a wound contacting sheet laminated to at least a region of the surface of the adhesive-coated apertured layer opposite the continuous semipermeable film. Suitably, the dressing is an island dressing, whereby an adhesive margin of the backing sheet extends around the wound contacting sheet. The width of the adhesive margin is suitably from about 5 mm to about 30 mm, for example from about 10 mm to about 20 mm. The width of the margin may be uniform, or it may vary in width, for example the wound contacting sheet may not be centered on the adhesive backing sheet.


The wound contacting sheet may be made up of one or more layers, usually including at least one absorbent layer. The absorbent layer may be any of the layers conventionally used for absorbing wound fluids, serum or blood in the wound healing art, including hydrophilic foams, gauzes, nonwoven fabrics, superabsorbents, hydro gels and mixtures thereof. The basis weight of the absorbent layer may be in the range of about 50 to about 500 g/m2, such as about 100 to about 400 glm2. The uncompressed thickness of the absorbent layer may be in the range of from about 0.5 mm to about 10 mm, such as about 1 mm to about 4 mm. The free (uncompressed) liquid absorbency measured for physiological saline may be in the range of about 5 to about 30 g/g at 25° C.


Other optional layers of the wound contacting sheet include a liquid-permeable, non-adherent wound contacting (top) layer. One or more of the layers may contain one or more therapeutic agents such as humectants, antimicrobials (e.g. silver as metal or a silver salt), odor-absorbents (e.g. activated charcoal), and therapeutic agents to promote wound healing (e.g. growth factors, protease inhibitors).


The wound facing surface of the dressing is suitably protected by a removable cover sheet. The cover sheet is typically formed from flexible thermoplastic material. Suitable materials include but are not limited to polyesters and polyolefins. Suitably, the adhesive-facing surface of the cover sheet is a release surface. That is to say, a surface that is only weakly adherent to the adhesive on the backing sheet to assist peeling of the adhesive layer from the cover sheet. For example, the cover sheet may be formed from a non-adherent plastic such as a fluoropolymer, or it may be provided with a release coating such as a silicone or fluoropolymer release coating.


The area of the dressing according to this aspect of the invention may vary according to the type and size of wound, but is typically from about 1 cm2 to about 500 cm2, for example from about 4 cm-to about 100 cm.


Typically, the wound dressing according to the present invention is sterile and packaged in a microorganism-impermeable container. For example, sterilization may be performed by gamma-irradiation after packaging.


The method according to the present invention comprises: coating an apertured solid substrate with a medically acceptable adhesive to form an adhesive-coated apertured layer, followed by laminating the coated apertured layer to a semipermeable continuous film. Suitably, the method is adapted for the manufacture of an adhesive backing sheet according to the invention as defined above. Accordingly, all features described III relation to the first aspect of the invention are applicable to this aspect.


According to the present invention, the apertured layer may be coated for example by spraying or dipping the apertured layer with the adhesive, or with a solution or dispersion of the adhesive in a suitable solvent, followed by drying for example at temperatures of about 25° C. to about 100° C. Suitably, the adhesive-coated apertured layer is then compressed, for example between rollers, to remove excess adhesive.


Suitably, the method is performed substantially continuously on continuous webs of the apertured and backing film, followed by cutting the laminate into lengths.


An embodiment of the present invention will now be described further, by way of example, with reference to the accompanying drawings.



FIG. 1 shows a detail view of part of a backing sheet according to the invention;


Referring to FIG. 1, the wound dressing 1 is an island-type, self-adhesive wound dressing comprising an adhesive backing sheet 2 according to the present invention as described below. The backing sheet 2 is permeable to water vapor, but impermeable to wound exudates and microorganisms.


A wound contacting sheet 3, such as one comprised of absorbent polyurethane foam material of the kind described in EP-A-0541391 and available from Johnson & Johnson Medical Ltd. under the registered trade mark TIELLE, is adhered to a central region of the adhesive-coated backing sheet 2 such that an adhesive-coated margin 6 of the backing sheet extends around the island 2 for attachment of the dressing to the skin around a wound.


Protective release-coated cover sheets 4,5 are provided as shown in FIG. 3. These cover sheets are removed immediately before use of the dressing.


Referring to FIG. 2, the adhesive-coated backing sheet 2 comprises a continuous, thin, semipermeable polymer film 7 having laminated thereto an adhesive-coated apertured thermoplastic web 8. The strands of the apertured web 8 are coated with a pressure-sensitive, medically acceptable adhesive to bond the apertured web 8 to the polymer film 7, and also to provide the desired adherency and stiffness to the backing sheet 2.


Adhesive-free interstices 9 in the apertured web 8 provide the desired moisture- and oxygen-permeability to the backing sheet.


Referring to FIG. 3, one embodiment of the process according to the invention comprises dipping a continuous strip of apertured material 10 in a bath 11 of adhesive, followed by compression between rollers 12 to remove excess adhesive and laminating the coated 5 apertured 8 to the continuous film 7 and the wound contacting island 3.


The entire contents of the patent publications identified above are expressly incorporated herein by reference.


Many other embodiments of the present invention falling within the scope of the accompanying claims will be apparent to the skilled reader.

Claims
  • 1. A wound dressing, comprising: a backing sheet; anda wound contacting sheet comprising at least one absorbent layer;wherein the backing sheet comprises an apertured layer and a continuous film laminated to the apertured layer, the film being impermeable to wound exudates and to microorganisms and permeable to water vapor;wherein the apertured layer comprises an apertured substrate coated with a medically acceptable adhesive; andwherein the apertured layer is laminted between the wound contacting sheet and the continuous film.
  • 2. A wound dressing according to claim 1, wherein a basis weight of the adhesive is from 25 to 75 gsm.
  • 3. A wound dressing according to claim 1, wherein the continuous film has a thickness of from 20 micrometers to 75 micrometers.
  • 4. A wound dressing according to claim 1 which is sterile, and packaged in a microorganism-impermeable container.
  • 5. The wound dressing of claim 1, wherein the apertured substrate further comprises a thermoplastic net.
  • 6. The wound dressing of claim 1, wherein a percent open area of the apertured layer is from 10% to 60%.
  • 7. The wound dressing of claim 1, wherein the apertured layer comprises apertures adapted to allow passage of gas.
  • 8. A method of making a backing sheet, comprising: forming an apertured layer by coating a medically acceptable adhesive onto an apertured substrate; andlaminating the apertured layer between a continuous film and a wound contacting sheet comprising at least one absorbent layer;wherein the continuous film is permeable to water vapor, but impermeable to wound exudates and microorganisms.
  • 9. The method of claim 8 wherein coating is carried out by spraying or dipping followed by passing between rollers to remove excess adhesive.
  • 10. The method of claim 8 further comprising applying a removable cover sheet to the wound contacting sheet.
  • 11. The method of claim 8, wherein a basis weight of the adhesive is from 25 to 75 gsm.
  • 12. The method of claim 8, wherein the apertured substrate comprises a unitary thermoplastic net.
  • 13. The method of claim 8, wherein the continuous film has a thickness of from 20 micrometers to 75 micrometers.
Priority Claims (1)
Number Date Country Kind
0725215.8 Dec 2007 GB national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/GB2008/004216 12/19/2008 WO 00 9/21/2010
Publishing Document Publishing Date Country Kind
WO2009/081134 7/2/2009 WO A
US Referenced Citations (315)
Number Name Date Kind
1355846 Rannells Oct 1920 A
2547758 Kelling Apr 1951 A
2632443 Lesher Mar 1953 A
2682873 Evans et al. Jul 1954 A
2910763 Lauterbach Nov 1959 A
2969057 Simmons Jan 1961 A
3066672 Crosby, Jr. et al. Dec 1962 A
3172808 Baumann et al. Mar 1965 A
3367332 Groves Feb 1968 A
3376868 Mondiadis Apr 1968 A
3520300 Flower, Jr. Jul 1970 A
3568675 Harvey Mar 1971 A
3648692 Wheeler Mar 1972 A
3682180 McFarlane Aug 1972 A
3742952 Magers et al. Jul 1973 A
3774611 Tussey et al. Nov 1973 A
3777016 Gilbert Dec 1973 A
3779243 Tussey et al. Dec 1973 A
3826254 Mellor Jul 1974 A
3852823 Jones Dec 1974 A
3967624 Milnamow Jul 1976 A
3983297 Ono et al. Sep 1976 A
4080970 Miller Mar 1978 A
4096853 Weigand Jun 1978 A
4139004 Gonzalez, Jr. Feb 1979 A
4141361 Snyder Feb 1979 A
4163822 Walter Aug 1979 A
4165748 Johnson Aug 1979 A
4184510 Murry et al. Jan 1980 A
4233969 Lock et al. Nov 1980 A
4245630 Lloyd et al. Jan 1981 A
4256109 Nichols Mar 1981 A
4261363 Russo Apr 1981 A
4275721 Olson Jun 1981 A
4284079 Adair Aug 1981 A
4297995 Golub Nov 1981 A
4333468 Geist Jun 1982 A
4360015 Mayer Nov 1982 A
4373519 Errede et al. Feb 1983 A
4382441 Svedman May 1983 A
4392853 Muto Jul 1983 A
4392858 George et al. Jul 1983 A
4414970 Berry Nov 1983 A
4419097 Rowland Dec 1983 A
4465485 Kashmer et al. Aug 1984 A
4475909 Eisenberg Oct 1984 A
4480638 Schmid Nov 1984 A
4525166 Leclerc Jun 1985 A
4525374 Vaillancourt Jun 1985 A
4529402 Weilbacher et al. Jul 1985 A
4540412 Van Overloop Sep 1985 A
4543100 Brodsky Sep 1985 A
4548202 Duncan Oct 1985 A
4551139 Plaas et al. Nov 1985 A
4569348 Hasslinger Feb 1986 A
4605399 Weston et al. Aug 1986 A
4608041 Nielsen Aug 1986 A
4640688 Hauser Feb 1987 A
4655754 Richmond et al. Apr 1987 A
4664652 Weilbacher May 1987 A
4664662 Webster May 1987 A
4710165 McNeil et al. Dec 1987 A
4715857 Juhasz et al. Dec 1987 A
4733659 Edenbaum et al. Mar 1988 A
4743232 Kruger May 1988 A
4753230 Carus et al. Jun 1988 A
4758220 Sundblom et al. Jul 1988 A
4787888 Fox Nov 1988 A
4826494 Richmond et al. May 1989 A
4832008 Gilman May 1989 A
4838883 Matsuura Jun 1989 A
4840187 Brazier Jun 1989 A
4848364 Bosman Jul 1989 A
4863449 Therriault et al. Sep 1989 A
4871611 LeBel Oct 1989 A
4872450 Austad Oct 1989 A
4878901 Sachse Nov 1989 A
4897081 Poirier et al. Jan 1990 A
4906233 Moriuchi et al. Mar 1990 A
4906240 Reed et al. Mar 1990 A
4919654 Kalt Apr 1990 A
4930997 Bennett Jun 1990 A
4941882 Ward et al. Jul 1990 A
4953565 Tachibana et al. Sep 1990 A
4961493 Kaihatsu Oct 1990 A
4969880 Zamierowski Nov 1990 A
4981474 Bopp et al. Jan 1991 A
4985019 Michelson Jan 1991 A
4995382 Lang et al. Feb 1991 A
4996128 Aldecoa et al. Feb 1991 A
5010883 Rawlings et al. Apr 1991 A
5018515 Gilman May 1991 A
5037397 Kalt et al. Aug 1991 A
5086170 Luheshi et al. Feb 1992 A
5092323 Riedel et al. Mar 1992 A
5092858 Benson et al. Mar 1992 A
5100396 Zamierowski Mar 1992 A
5112323 Winkler et al. May 1992 A
5134994 Say Aug 1992 A
5149331 Ferdman et al. Sep 1992 A
5151314 Brown Sep 1992 A
5152757 Eriksson Oct 1992 A
5167613 Karami et al. Dec 1992 A
5176663 Svedman et al. Jan 1993 A
5180375 Feibus Jan 1993 A
5215522 Page et al. Jun 1993 A
5232453 Plass et al. Aug 1993 A
5261893 Zamierowski Nov 1993 A
5266372 Arakawa et al. Nov 1993 A
5270358 Asmus Dec 1993 A
5278100 Doan et al. Jan 1994 A
5279550 Habib et al. Jan 1994 A
5298015 Komatsuzaki et al. Mar 1994 A
5342329 Croquevielle Aug 1994 A
5342376 Ruff Aug 1994 A
5344415 DeBusk et al. Sep 1994 A
5356386 Goldberg et al. Oct 1994 A
5358494 Svedman Oct 1994 A
5384174 Ward et al. Jan 1995 A
5387207 Dyer et al. Feb 1995 A
5419769 Devlin et al. May 1995 A
5423778 Eriksson et al. Jun 1995 A
5429590 Saito et al. Jul 1995 A
5437622 Carion Aug 1995 A
5437651 Todd et al. Aug 1995 A
5445604 Lang Aug 1995 A
5447492 Cartmell et al. Sep 1995 A
5501212 Psaros Mar 1996 A
5522808 Skalla Jun 1996 A
5527293 Zamierowski Jun 1996 A
5549584 Gross Aug 1996 A
5549585 Maher et al. Aug 1996 A
5556375 Ewall Sep 1996 A
5585178 Calhoun et al. Dec 1996 A
5599292 Yoon Feb 1997 A
5607388 Ewall Mar 1997 A
5634893 Rishton Jun 1997 A
5636643 Argenta et al. Jun 1997 A
5641506 Talke et al. Jun 1997 A
5645081 Argenta et al. Jul 1997 A
5653224 Johnson Aug 1997 A
5678564 Lawrence et al. Oct 1997 A
5710233 Meckel et al. Jan 1998 A
5714225 Hansen et al. Feb 1998 A
5736470 Schneberger et al. Apr 1998 A
5776119 Bilbo et al. Jul 1998 A
5807295 Hutcheon et al. Sep 1998 A
5919476 Fischer et al. Jul 1999 A
5941863 Guidotti et al. Aug 1999 A
5981822 Addison Nov 1999 A
6071267 Zamierowski Jun 2000 A
6086995 Smith Jul 2000 A
6135116 Vogel et al. Oct 2000 A
6174306 Fleischmann Jan 2001 B1
6191335 Robinson Feb 2001 B1
6241747 Ruff Jun 2001 B1
6262329 Brunsveld et al. Jul 2001 B1
6287316 Agarwal et al. Sep 2001 B1
6345623 Heaton et al. Feb 2002 B1
6458109 Henley et al. Oct 2002 B1
6488643 Tumey et al. Dec 2002 B1
6493568 Bell et al. Dec 2002 B1
6495229 Carte Dec 2002 B1
6548727 Swenson Apr 2003 B1
6553998 Heaton et al. Apr 2003 B2
6566575 Stickels et al. May 2003 B1
6566577 Addison et al. May 2003 B1
6626891 Ohmstede Sep 2003 B2
6627215 Dale et al. Sep 2003 B1
6648862 Watson Nov 2003 B2
6680113 Lucast et al. Jan 2004 B1
6685681 Lockwood et al. Feb 2004 B2
6693180 Lee et al. Feb 2004 B2
6695823 Lina et al. Feb 2004 B1
6752794 Lockwood et al. Jun 2004 B2
6787682 Gilman Sep 2004 B2
6814079 Heaton et al. Nov 2004 B2
6855135 Lockwood et al. Feb 2005 B2
6856821 Johnson Feb 2005 B2
6979324 Bybordi et al. Dec 2005 B2
7070584 Johnson et al. Jul 2006 B2
7154017 Sigurjonsson et al. Dec 2006 B2
7402721 Sigurjonsson et al. Jul 2008 B2
7569742 Haggstrom et al. Aug 2009 B2
7645269 Zamierowski Jan 2010 B2
8058499 Silcock Nov 2011 B2
8298197 Eriksson et al. Oct 2012 B2
8529532 Pinto et al. Sep 2013 B2
8632523 Eriksson et al. Jan 2014 B2
8764732 Hartwell Jul 2014 B2
9192444 Locke et al. Nov 2015 B2
20010030304 Kohda et al. Oct 2001 A1
20010051178 Blatchford et al. Dec 2001 A1
20020009568 Bries et al. Jan 2002 A1
20020016346 Brandt et al. Feb 2002 A1
20020065494 Lockwood et al. May 2002 A1
20020077661 Saadat Jun 2002 A1
20020115951 Norstrem et al. Aug 2002 A1
20020119292 Venkatasanthanam et al. Aug 2002 A1
20020120185 Johnson Aug 2002 A1
20020130064 Adams et al. Sep 2002 A1
20020143286 Tumey Oct 2002 A1
20020150270 Werner Oct 2002 A1
20020150720 Howard et al. Oct 2002 A1
20020161346 Lockwood et al. Oct 2002 A1
20020164346 Nicolette Nov 2002 A1
20020183702 Henley et al. Dec 2002 A1
20020198504 Risk et al. Dec 2002 A1
20030014022 Lockwood et al. Jan 2003 A1
20030109855 Solem et al. Jun 2003 A1
20030158577 Ginn et al. Aug 2003 A1
20030212357 Pace Nov 2003 A1
20030225347 Argenta et al. Dec 2003 A1
20030225355 Butler Dec 2003 A1
20040002676 Siegwart et al. Jan 2004 A1
20040030304 Hunt et al. Feb 2004 A1
20040064132 Boehringer et al. Apr 2004 A1
20040077984 Worthley Apr 2004 A1
20040099268 Smith et al. May 2004 A1
20040118401 Smith et al. Jun 2004 A1
20040127836 Sigurjonsson et al. Jul 2004 A1
20040127862 Bubb et al. Jul 2004 A1
20040133143 Burton et al. Jul 2004 A1
20040186239 Qin et al. Sep 2004 A1
20040219337 Langley et al. Nov 2004 A1
20040230179 Shehada Nov 2004 A1
20050034731 Rousseau et al. Feb 2005 A1
20050054998 Poccia et al. Mar 2005 A1
20050059918 Sigurjonsson et al. Mar 2005 A1
20050065484 Watson Mar 2005 A1
20050070858 Lockwood et al. Mar 2005 A1
20050101940 Radl et al. May 2005 A1
20050113732 Lawry May 2005 A1
20050124925 Scherpenborg Jun 2005 A1
20050131327 Lockwood et al. Jun 2005 A1
20050137539 Biggie et al. Jun 2005 A1
20050143694 Schmidt et al. Jun 2005 A1
20050159695 Cullen et al. Jul 2005 A1
20050161042 Fudge et al. Jul 2005 A1
20050163978 Strobech et al. Jul 2005 A1
20050214376 Faure et al. Sep 2005 A1
20050233072 Stephan et al. Oct 2005 A1
20050256437 Silcock et al. Nov 2005 A1
20050261642 Weston Nov 2005 A1
20050261643 Bybordi et al. Nov 2005 A1
20050277860 Jensen Dec 2005 A1
20060079852 Bubb et al. Apr 2006 A1
20060083776 Bott et al. Apr 2006 A1
20060154546 Murphy Jul 2006 A1
20060241542 Gudnason et al. Oct 2006 A1
20060271020 Huang et al. Nov 2006 A1
20070027414 Hoffman et al. Feb 2007 A1
20070078366 Haggstrom et al. Apr 2007 A1
20070185426 Ambrosio et al. Aug 2007 A1
20070225663 Watt et al. Sep 2007 A1
20070265585 Joshi et al. Nov 2007 A1
20070265586 Joshi et al. Nov 2007 A1
20080090085 Kawate et al. Apr 2008 A1
20080119802 Riesinger May 2008 A1
20080149104 Eifler Jun 2008 A1
20080195017 Robinson et al. Aug 2008 A1
20080225663 Smith et al. Sep 2008 A1
20080243044 Hunt et al. Oct 2008 A1
20080269657 Brenneman et al. Oct 2008 A1
20080271804 Biggie et al. Nov 2008 A1
20090025724 Herron, Jr. Jan 2009 A1
20090088719 Driskell Apr 2009 A1
20090093779 Riesinger Apr 2009 A1
20090124988 Coulthard May 2009 A1
20090177172 Wilkes Jul 2009 A1
20090216204 Bhavaraju et al. Aug 2009 A1
20090227969 Jaeb et al. Sep 2009 A1
20090264807 Haggstrom et al. Oct 2009 A1
20090292264 Hudspeth et al. Nov 2009 A1
20090312662 Colman et al. Dec 2009 A1
20090326488 Budig et al. Dec 2009 A1
20100063467 Addison et al. Mar 2010 A1
20100106106 Heaton et al. Apr 2010 A1
20100106118 Heaton et al. Apr 2010 A1
20100125259 Olson May 2010 A1
20100159192 Cotton Jun 2010 A1
20100185163 Heagle Jul 2010 A1
20100226824 Ophir et al. Sep 2010 A1
20100262090 Riesinger Oct 2010 A1
20100267302 Kantner et al. Oct 2010 A1
20100305490 Coulthard et al. Dec 2010 A1
20100305524 Vess et al. Dec 2010 A1
20100324516 Braga et al. Dec 2010 A1
20110046585 Weston Feb 2011 A1
20110137271 Andresen et al. Jun 2011 A1
20110160686 Ueda Jun 2011 A1
20110171480 Mori et al. Jul 2011 A1
20110172617 Riesinger Jul 2011 A1
20110224631 Simmons et al. Sep 2011 A1
20110229688 Cotton Sep 2011 A1
20110244010 Doshi Oct 2011 A1
20110257617 Franklin Oct 2011 A1
20120016322 Coulthard et al. Jan 2012 A1
20120123359 Reed May 2012 A1
20120143157 Riesinger Jun 2012 A1
20120258271 Maughan Oct 2012 A1
20130030394 Locke et al. Jan 2013 A1
20130066285 Locke et al. Mar 2013 A1
20130096518 Hall et al. Apr 2013 A1
20130152945 Locke et al. Jun 2013 A1
20140039423 Riesinger Feb 2014 A1
20140039424 Locke Feb 2014 A1
20140155849 Heaton et al. Jun 2014 A1
20140171851 Addison Jun 2014 A1
20140309574 Cotton Oct 2014 A1
20140350494 Hartwell et al. Nov 2014 A1
20150030848 Goubard Jan 2015 A1
20150119830 Luckemeyer et al. Apr 2015 A1
20150190286 Allen et al. Jul 2015 A1
20160067107 Cotton Mar 2016 A1
Foreign Referenced Citations (119)
Number Date Country
550575 Mar 1986 AU
745271 Mar 2002 AU
755496 Dec 2002 AU
2009200608 Oct 2009 AU
2005436 Jun 1990 CA
87101823 Aug 1988 CN
26 40 413 Mar 1978 DE
43 06 478 Sep 1994 DE
29 504 378 Sep 1995 DE
202004018245 Jul 2005 DE
0097517 Jan 1984 EP
0100148 Feb 1984 EP
0117632 Sep 1984 EP
0 147 119 Jul 1985 EP
0161865 Nov 1985 EP
0251810 Jan 1988 EP
0275353 Jul 1988 EP
0358302 Mar 1990 EP
0 538 917 Apr 1993 EP
0538917 Apr 1993 EP
0 630 629 Dec 1994 EP
0630629 Dec 1994 EP
0659390 Jun 1995 EP
0633758 Oct 1996 EP
1002846 May 2000 EP
1018967 Jul 2000 EP
2578193 Apr 2013 EP
692578 Jun 1953 GB
1386800 Mar 1975 GB
2 195 255 Apr 1988 GB
2 197 789 Jun 1988 GB
2 220 357 Jan 1990 GB
2 235 877 Mar 1991 GB
2 329 127 Mar 1999 GB
2 333 965 Aug 1999 GB
2377939 Jan 2003 GB
2392836 Mar 2004 GB
2393655 Apr 2004 GB
2425487 Nov 2006 GB
2452720 Mar 2009 GB
2496310 May 2013 GB
1961003393 Feb 1961 JP
S62139523 Sep 1987 JP
S62-275456 Nov 1987 JP
2007254515 Oct 2007 JP
2008080137 Apr 2008 JP
4129536 Aug 2008 JP
71559 Apr 2002 SG
8002182 Oct 1980 WO
8704626 Aug 1987 WO
8707164 Dec 1987 WO
90010424 Sep 1990 WO
93009727 May 1993 WO
94020041 Sep 1994 WO
9605873 Feb 1996 WO
9622753 Aug 1996 WO
9718007 May 1997 WO
9913793 Mar 1999 WO
9965542 Dec 1999 WO
0119306 Mar 2001 WO
0136188 May 2001 WO
0160296 Aug 2001 WO
0168021 Sep 2001 WO
0185248 Nov 2001 WO
0243743 Jun 2002 WO
02062403 Aug 2002 WO
03-018098 Mar 2003 WO
03045294 Jun 2003 WO
03045492 Jun 2003 WO
03053484 Jul 2003 WO
2004024197 Mar 2004 WO
2004037334 May 2004 WO
2004112852 Dec 2004 WO
2005002483 Jan 2005 WO
2005062896 Jul 2005 WO
2005105176 Nov 2005 WO
2005123170 Dec 2005 WO
2007022097 Feb 2007 WO
2007030601 Mar 2007 WO
2007070269 Jun 2007 WO
2007085396 Aug 2007 WO
2007087811 Aug 2007 WO
2007113597 Oct 2007 WO
2007133618 Nov 2007 WO
2008041926 Apr 2008 WO
2008054312 May 2008 WO
2008082444 Jul 2008 WO
2008100440 Aug 2008 WO
2008104609 Sep 2008 WO
2008131895 Nov 2008 WO
2009002260 Dec 2008 WO
2008149107 Dec 2008 WO
2009066105 May 2009 WO
2009066106 May 2009 WO
2009081134 Jul 2009 WO
2009089016 Jul 2009 WO
2009124100 Oct 2009 WO
2009126103 Oct 2009 WO
2010032728 Mar 2010 WO
2010056977 May 2010 WO
2010129299 Nov 2010 WO
2011008497 Jan 2011 WO
2011049562 Apr 2011 WO
2011043786 Apr 2011 WO
2011115908 Sep 2011 WO
2011121127 Oct 2011 WO
2011162862 Dec 2011 WO
2012112204 Aug 2012 WO
2012104584 Aug 2012 WO
2012140378 Oct 2012 WO
2012143665 Oct 2012 WO
2013009239 Jan 2013 WO
2013090810 Jun 2013 WO
2014039557 Mar 2014 WO
2014113253 Jul 2014 WO
2014140608 Sep 2014 WO
2014143488 Sep 2014 WO
2015065615 May 2015 WO
2015130471 Sep 2015 WO
Non-Patent Literature Citations (97)
Entry
Louis C. Argenta, MD and Michael J. Morykwas, PHD; Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience; Annals of Plastic Surgery.
Susan Mendez-Eatmen, RN; “When wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24.
James H. Blackburn II, MD et al.: Negative-Pressure Dressings as a Bolster for Skin Grafts; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457; Lippincott Williams & Wilkins, Inc., Philidelphia, PA, USA.
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letter to the Editor, British Journal of Plastic Surgery, 198, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK.
S.E. Greer, et al. “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), 53, pp. 484-487.
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, 31, 1990, pp. 634-639.
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80.
International Search Report for PCT International Application PCT/GB95/01983; dated Nov. 23, 1995.
PCT International Search Report for PCT International Application PCT/GB98/02713; dated Jan. 8, 1999.
PCT Written Opinion; PCT International Application PCT/GB98/02713; dated Jun. 8, 1999.
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; dated Jan. 15, 1998 & Apr. 29, 1997.
PCT Written Opinion, PCT International Application PCT/GB96/02802; dated Sep. 3, 1997.
Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5.
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof.
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof.
Yusupov. Yu.N., et al; “Active Wound Drainage”, Vestnki Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof.
Davydov, Yu.A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirugi, Oct. 1988, pp. 48-52, and 8 page English translation thereof.
Davydov, Yu.A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof.
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63.
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24.
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, pp. 2.
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534.
Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81.
Arnljots, Björn et al.: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., No. 19, 1985, pp. 211-213.
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221.
Svedman, P. et al: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous of Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133.
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986); pp. 94-96 (certified translation).
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246.
G. {hacek over (Z)}ivadinovi?, V. ?uki?, {hacek over (Z)}. Maksimovi?, ?. Radak, and P. Pe{hacek over (s)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (certified translation).
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585.
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (certified translation).
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370.
D.E. Tribble, An Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery 105 (1972) pp. 511-513.
M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown, and W. McGuirt, “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation,” Annals of Plastic Surgery 38 (1997), pp. 553-562 (Morykwas I).
C.E. Tennants, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of the American Medical Association 64 (1915), pp. 1548-1549.
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211.
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”).
V.A. Kuznetsov & N.a. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”).
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”).
V.A.C. ® Therapy Clinical Guidelines: A Reference Source for Clinicians; Jul. 2007.
European Examination Report dated Jun. 29, 2016, corresponding to EP Application No. 16173614.5.
International Search Report and Written Opinion for PCT/GB2008/004216 dated Jul. 2, 2009.
International Search Report and Written Opinion for PCT/GB2008/003075 dated Mar. 11, 2010.
International Search Report and Written Opinion for PCT/GB2012/000099 dated May 2, 2012.
EP Examination Report for corresponding application 12705381.7, dated May 22, 2014.
International Search Report and Written Opinion for PCT/US2012/069893 dated Apr. 8, 2013.
International Search Report and Written Opinion for PCT/US2013/070070 dated Jan. 29, 2014.
International Search Report and Written Opinion for PCT/US2014/016320 dated Apr. 15, 2014.
International Search Report and Written Opinion for PCT/US2014/056566 dated Dec. 5, 2014.
International Search Report and Written Opinion for PCT/US2014/056508 dated Dec. 9, 2014.
International Search Report and Written Opinion for PCT/US2014/056524 dated Dec. 11, 2014.
International Search Report and Written Opinion for PCT/US2014/056594 dated Dec. 2, 2014.
Partial Internationl Search Report dated Jul. 31, 2009; PCT Internationl Application No. PCT/US2009/036222.
International Search Report and Written opinion dated Dec. 15, 2009; PCT Internation Application No. PCT/US2009/036222.
International Search Report and Written Opinion dated Feb. 24, 2010; PCT/US2009/057182.
International Search Report and Written Opinion dated Jan. 5, 2010; PCT International Application No. PCT/US2009/057130.
Response filed Oct. 20, 2011 for U.S. Appl. No. 12/398,904.
Interview Summary dated Oct. 27, 2011 for U.S. Appl. No. 12/398,904.
Non-Final Office Action dated Jul. 20, 2011 for U.S. Appl. No. 12/398,904.
NDP 1000 Negative Pressure Wound Terapy System, Kalypto Medical, pp. 1-4.
Partial International Search Report dated Jul. 31, 2009 for PCT International Application No. PCT/US2009/036217.
International Search Report and Written Opinion dated May 31, 2010 for PCT Application No. PCT/US2009/064364.
Examination report for AU2009221772 dated Apr. 4, 2011.
Response filed Oct. 21, 2011 for U.S. Appl. No. 12/398,891.
Interview Summary dated Oct. 27, 2011 for U.S. Appl. No. 12/398,891.
Restriction Requirement dated Jun. 13, 2011 for U.S. Appl. No. 12/398,891.
Response filed Jun. 24, 2011 for U.S. Appl. No. 12/398,891.
Non-Final Office Action dated Jul. 21, 2011 for U.S. Appl. No. 12/398,891.
International Search Report and Written Opinion dated Oct. 19, 2010; PCT International Application No. PCT/US2009/036217.
International Search Report and Written Opinion dated Feb. 24, 2010; PCT International Application No. PCT/US2009/057182.
NPD 1000 Negative Pressure Would Therapy System, Kalypto Medical, pp. 1-4.
Partial International Search Report dated Jul. 31, 2009; PCT Internationl Application No. PCT/US2009/036222.
Non-Final Rejection for U.S. Appl. No. 12/398,904 dated Mar. 14, 2012.
Response to Non-Final Rejection for U.S. Appl. No. 12/398,904, filed Jun. 4, 2012.
International Search Report and Written Opinion for PCT/US2014/061251 dated May 8, 2015.
International Search Report and Written Opinion for PCT/IB2013/060862 dated Jun. 26, 2014.
International Search Report and Written Opinion for PCT/US2015/015493 dated May 4, 2015.
European Search Report for corresponding Application No. 15194949.2.
European Search Report for corresponding EPSN 15157408.4 published on Sep. 30, 2015.
International Search Report and Written Opinion for PCT/US2015/034289 dated Aug. 21, 2015.
International Search Report and Written Opinion for PCT/US2015/065135 dated Apr. 4, 2016.
International Search Report and Written Opinion for PCT/GB2012/050822 dated Aug. 8, 2012.
International Search Report and Written Opinion for PCT/US2015/029037 dated Sep. 4, 2015.
International Search Report and Written Opinion dated Jun. 1, 2011 for PCT International Application No. PCT/US2011/028344.
European Search Report for EP 11714148.1, dated May 2, 2014.
European Search Report for corresponding Application No. 15192606.0 dated Feb. 24, 2016.
International Search Report and Written Opinion for corresponding PCT/US2014/048081 dated Nov. 14, 2014.
International Search Report and Written Opinion for corresponding PCT/US2014/010704 dated Mar. 25, 2014.
European Search Report for corresponding EP Application 171572787 dated Jun. 6, 2017.
International Search Report and Written Opinion for corresponding application PCT/US2016/031397, dated Aug. 8, 2016.
European Search Report for corresponding application 17167872.5, dated Aug. 14, 2017.
M. Waring et al., “Cell attachment to adhesive dressing: qualitative and quantitative analysis”, Wounds, UK, (2008), vol. 4, No. 3, pp. 35-47.
R. White, “Evidence for atraumatic soft silicone wound dressing use”. Wound, UK (2005), vol. 3, pp. 104-108, Mepilex Border docs, (2001).
European Search Report for corresponding application 17183683.6, dated Sep. 18, 2017.
European Search Report for corresponding application 17164033.7, dated Oct. 13, 2017.
Extended European Search Report for corresponding application 17191970.7, dated Oct. 26, 2017.
Japanese office action for corresponding Japanese patent application 2015-547246, dated Sep. 5, 2017.
Related Publications (1)
Number Date Country
20110004139 A1 Jan 2011 US