The invention pertains to catheter tubes with distal tips that are so articulated as to be laterally selectively deflectable and to the longitudinal reinforcement of the tubing used in such catheters and means and methods of making and using such catheter tubes. More particularly, the invention relates to articulated distal tips in longitudinally reinforced catheters of relatively self-sustaining structure, such as epidural catheters.
The manner in which the advantages of the invention are obtained will be understood by a particular description of the invention rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered limiting of its scope, the invention will be described and explained with specificity and detail through the use of the accompanying drawings in which:
Catheter 10 encloses a longitudinally extending working lumen that communicates with the exterior of catheter 10 at terminus 20 of distal tip 16. As used herein the expression “working lumen” is intended to connote a passageway interior of a catheter that is used to conduct or facilitate therapeutic activities other than or in addition to those related to the implantation, positioning, or orientation of the catheter or the distal tip thereof. In particular, a catheter passageway dedicated specifically to purposes pertaining to the implantation, positioning, or orientation of a catheter or the distal tip thereof, to the exclusion of any therapeutic activity, is not intended to be included within the scope of the expression “working lumen” as used herein.
User handle 18 includes a connection hub 22 attached to proximal end 14 of catheter 10. Connection hub 22 enables selective fluid communication to be established by way of the working lumen in catheter 10 with the region interior the body of a patient at which terminus 20 of distal tip 16 is disposed. Nonetheless, the teachings of the invention have utility in a catheter having a working lumen with a closed distal end or a working lumen that communicates with the exterior of that catheter through the sidewalls thereof. In any case, connection hub 22 of user handle 18 is secured to a hand grip 24 that includes a moveable finger trigger 26 by which lateral deflection of distal tip 16 is selectively controlled by a medical practitioner.
The structure of catheter 10 is reinforced for several purposes. The first of these is to preclude failure in the structural integrity of catheter 10 during use, either within or outside of the body of a patient. Thus, it is intended through such reinforcement that the shaft of catheter 10 be precluded from unintentional kinking, that distal tip 16 of catheter 10 be incapable of separation from the balance of the shaft of catheter 10, and that the outer wall of catheter 10 be prevented from puncture or rupture. Second, catheter 10 is sufficiently reinforced as to be able, once distal end 12 of catheter 10 has been entered into the body of a patient, to transmit to distal tip 16 forces applied by medical practitioners to proximal end 14 of catheter 10 to effect the advancement, the withdrawal, or the rotation of catheter 10.
While the various teachings of the invention disclosed herein find full utility in catheters utilizable in epidural procedures, those teachings also have applicability in whole or in part in all types of medical catheters, including cardiovascular access catheters, coronary catheters, endoscopic catheters, and surgical catheters.
A cylindrical, flexible tube 40, comprising layer 68 and layer 70, snugly engages the exterior surfaces of the successive loops of coil spring 36 through at least terminal portion 64 of coil spring 36 (explained in reference to
Flexible tube 40 is constructed of various medical grade materials, such as PET, FEP, nylon, urethane, silicone, or other polymers in a uniform matrix or in a layered arrangement of materials.
Final loop 30 and penultimate loop 32 of coil spring 36 are longitudinally separated from each other. This is also the case in relation to penultimate loop 32 and the next successive loop of distal end 34 that is not visible in
Flexible tube 40 precludes lateral access to or from the working lumen extending longitudinally through catheter 10 and the center of coil spring 36. Communication of that working lumen with the exterior of catheter 10 is thus restricted to a circular end opening 48 that is encircled by end face 46 of flexible tube 40.
The circularity of an end opening, such as end opening 48, is not, however, essential to the effective implementation of teachings of the invention. Catheters with noncircular exterior cross sections or with end openings inclined relative to the longitudinal axis of a catheter at the distal terminus thereof will in most instances have end openings that are not circular. Circumstances exist relative to specific intended medical procedures in which the distal tip structure of a catheter may vary from the structure of the balance of the body of the catheter, often toward the end of effecting a particular distal end opening configuration. In addition, catheters are known in which the working lumen thereof is closed at the distal end thereof; so that fluid flow therethrough is precluded, or if effected at all, is effected through apertures or valving provided in the side walls or the tip of the catheter.
Snugly engaged by flexible tube 40, the successive loops of coil spring 36 add to the robustness of catheter 10, increasing resistance to kinking or collapse and improving the degree to which advancement, retraction, and torsional forces applied to proximal end 14 of catheter 10 are transmitted to distal tip 16 thereof when distal end 12 of catheter 10 is resident in the body of a patient. Thus, coil spring 36 and flexible tube 40 in combination function as an elongated tubular outer wall for catheter 10 that is internally reinforced by a helical coil spring.
According to one aspect of the invention, a catheter, such as catheter 10 is provided with utility enhancement means operably interconnected with the outer wall of that catheter. The utility enhancement means of the invention performs the dual functions of longitudinally rigidifying the outer wall of that catheter and of selectively laterally deflecting the distal tip thereof. In the context of catheter 10, such a utility enhancement means is operably interconnected to both coil spring 36 and to flexible tube 40.
As seen in part in
While the proximal end of bound portion 52 of filament 50 is not shown in
Free portion 54 of filament 50 has a distal end 60 that is secured in a smoothly continuous maimer to distal end 58 of bound portion 52. As a result free portion 54 is also operably interconnected to both spring coil 36 and to flexible tube 40.
Filament 50 is constructed from a medical grade metallic or synthetic material having substantial tensile strength. As seen in the transverse cross section in
As shown in
Nonetheless, as depicted in
As shown in
If a substantial length of distal end 12 of catheter 10 is free from constraints by internal physiological structures within the body of a patient, the proximal withdrawal of free portion 54 of filament 50 will initially cause only the portion of catheter 10 surrounding distal portion 64 of coil spring 36 to deflect laterally as shown in
There are many types of catheters in which no substantial portion of a reinforcing internal helical coil spring is bottomed out in the manner illustrated in
On occasion, flexible tube 40 is constructed as a plurality of concentric layers. Such a situation is illustrated in
To manufacture a catheter, such as catheter 10, a first portion of a filament, such as filament 50, is disposed along the exterior of an elongated, helical coil spring, such as coil spring 36. This assembly is then placed in an oversized heat-shrinkable polyester tube. Heat is applied to the assembly, causing the polyester tube to snuggly engage the exterior of the coil spring with the first portion of the filament captured therebetween. A second portion of the filament not otherwise thusly captured is then passed through the passageway in the spring coil from one end to the other. Finally, an outer layer of skin compatible material is applied to the exterior of the polyester tube using extrusion over-molding techniques.
The longitudinal cross section presented in
An elongated flexible tube 98 snugly engages the exterior of coil spring 94, whereby flexible tube 98 and coil spring 94 together function as an elongated tubular outer wall for catheter 80 that is internally reinforced by a helical coil spring. Flexible tube 98 includes an inner layer 100 that is disposed in direct contact with the exterior of coil spring 94 and an outer layer 102 that engages the exterior of inner layer 100. Often, outer layer 102 is made softer, or more skin compatible, than inner layer 100. Furthermore, a terminal portion 104 of outer layer 102 adjoining the distal end of outer layer 102 is made of softer material than is the longitudinal balance 106 of outer layer 102 proximal of terminal portion 104. This results in a differential in flexibility along the length of distal tip 82 of catheter 80 and a maximum flexibility at terminal position 104 of outer layer 102.
These relationships are depicted in transverse cross section in
As shown in
According to one aspect of the invention, a catheter, such as catheter 80 includes utility enhancement means operably interconnected with the outer wall of the catheter for both longitudinally rigidifying the outer wall and for selectively laterally deflecting the distal tip of the catheter. As illustrated in
If it is intended to deflect distal tip 82 in the opposite direction, to the left in
Distal end 114 of steering cable 112 is connected to distal end 110 of reinforcing cable 108 in a smoothly continuous manner, whereby reinforcing cable 108 and steering cable 112 are a continuous elongated structure. Nonetheless, steering cable 112 and reinforcing cable 108 could be distinctly different structures with attached distal ends or with distal ends operably interconnected through intermediating structures.
At terminus 86 of distal tip 82 of catheter 80 is a rigid end piece 118 that is secured to distal end 120 of flexible tube 98. As appreciated by reference to
End piece 118 can also function as an attachment site for the distal ends of one or both of reinforcing cable 108 and steering cable 112. Where reinforcing cable 108 and steering cable 112 are a continuous elongated structure, that structure can be looped through an end piece, such as end piece 118, in order to implement teachings of the invention.
A flexible tube 140 snugly engages the exterior of coil spring 136. Flexible tube 140 includes an inner layer 142 that is in direct contact with the exterior of coil spring 136 and an outer layer 144 engaging the exterior of inner layer 142. Inner layer 142 stops proximal terminal portion 138 of coil spring 136, where successive loops of coil spring 136 are bottomed out. Typically, outer layer 144 is softer and more skin compatible than is inner layer 142. Coil spring 136 and flexible tube 140 together function for catheter 130 as an elongated tubular outer wall that is internally reinforced by a helical coil spring. In various embodiments, eye-holes or eyelets 139 are cut or formed in flexible tube 140 for infusion along terminal portion 138.
According to one aspect of the invention, a catheter, such as catheter 130, includes utility enhancement means operably interconnected with the outer wall of that catheter for both longitudinally rigidifying the outer wall and for selectively laterally deflecting the distal tip of the catheter. As illustrated in
If it is intended to deflect distal tip 132 in the opposite direction, to the left in
A rigid end piece 156 is secured to distal end 158 of flexible tube 140. In various embodiments, end piece 156 is welded, such as in a welded ball, to distal end 158 and/or to coil spring 136 and/or to filament 146. End piece 156, functions as a closed distal terminus for the working lumen within catheter 130 and has a semispherical exterior profile. An electrically driven transducer 160 is mounted in end piece 156 and coupled to power and control sources at the proximal end of catheter 130 through a lead wire 162 that extends from transducer 160 proximally through the working lumen in catheter 130. End piece 156 can also function as an attachment site as for continuous filament 146.
Teachings of the invention find applicability in addition in the construction of reinforced catheter tubing that is intended for use with catheters without articulated distal tips.
The interior construction of catheter 170 involves an elongated helical coil spring 186 having an open distal end 188 and an open proximal end 190 and enclosing a longitudinal passageway extending therebetween. In a terminal portion 192 of coil spring 186 adjoining distal end 188 thereof, successive loops of coil spring 186 are longitudinally separated. Successive loops of coil spring 186 proximal of terminal portion 192 are bottomed out.
An elongated flexible tube 194 snugly engages the exterior of coil spring 186 along the full length of catheter 170. Flexible tube 194 includes an inner layer 196 that is in direct contact with the exterior of coil spring 186 and an outer layer 198 that engages the exterior of inner layer 196. Often, outer layer 198 is manufactured from a softer more skin-compatible material than that utilized in forming inner layer 196. Inner layer 196 has a uniform thickness and, an invariable outer diameter along the full length of catheter 170. The thickness of outer layer 198 increases in the proximal direction at transition portion 184 and is therefore greater in distal portion 182 of distal tip 178 than in proximal portion 180.
To enhance the longitudinal rigidity of catheter 170 and/or enhance fluoroscopic visibility, one or more longitudinally extending reinforcing cables 200 are disposed between flexible tube 194 and the exterior of coil spring 186. The single reinforcing cable 200 illustrated in
Coil spring 186 and flexible tube 194 together function in catheter 170 as an elongated tubular outer wall reinforced by an internal helical coil spring. This tubular outer wall encloses the working lumen for catheter 170. The disposition of one or more reinforcing cables, like reinforcing cable 200, within that elongated tubular outer wall between flexible tube 194 and coil spring 186 lends to catheter 170 an enhanced capacity to transmit to distal end 172 thereof advancement, withdrawal, and twisting forces applied to proximal end 174 by a user.
The interior construction of catheter 220 involves an elongated helical coil spring 230 having an open distal end 232 and an open proximal end 234 and enclosing a longitudinal passageway extending therebetween. In a terminal portion 236 of coil spring 230 adjoining distal end 232 thereof, successive loops of coil spring 230 are longitudinally separated. The successive loops of coil spring 230 proximal of terminal portion 236 thereof are bottomed out.
An elongated flexible tube 238 snugly encircles the exterior of coil spring 230 along the full length of catheter 220. Flexible tube 238 exhibits a single-layer structure of substantially uniform material composition. Coil spring 230 and flexible tube 238 together function in catheter 220 as an elongated tubular outer wall reinforced by an internal helical spring coil. That outer wall encloses the working lumen that extends longitudinally through catheter 220 from distal end 222 to proximal end 224 thereof.
To enhance the longitudinal rigidity of catheter 220, one or more pairs of longitudinally extending reinforcing cables of the type illustrated in
A second reinforcing cable 246 having a distal end 248 and a proximal end 250 extends the full length of coil spring 230 from distal end 232 to proximal end 234 of coil spring 230 within the working lumen in catheter 220. Distal end 242 of first reinforcing cable 240 and distal end 248 of second reinforcing cable 246 are attached directly in a smoothly continuous manner, whereby first reinforcing cable 240 and second reinforcing cable 246 form a continuous elongated structure. Nonetheless, first reinforcing cable 240 and second reinforcing cable 246 could be distinctly different structures with attached distal ends or, with operably interconnected distal ends, as by being bonded to final distal loop 252 of coil spring 230.
As shown with enhanced clarity in
The disposition of one or more pairs of reinforcing cables like first reinforcing cable 240 within that elongated tubular outer wall of catheter 220 and second reinforcing cable 246 within the working lumen in that elongated tubular outer wall, lends to catheter 220 an enhanced capacity to transmit to distal end 222 thereof advancement, withdrawal, and twisting forces applied to proximal end 224 by a user. Such pairs of reinforcing cables also serve to maintain the position in catheter 220 of loops of spring coil 230 should flexible tube 238 cease to be able to do so due to wear or fracture.
The invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application is the National Phase entry of PCT International Application Number PCT/US2006/043224, filed on Nov. 3, 2006, and published, in English, as WO 2007/056302 A2 on May 18, 2007. This application claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 60/734,706, filed Nov. 8, 2005, for “Reinforced Catheter with Articulated Distal Tip”, the contents of which are incorporated herein by this reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2006/043224 | 11/3/2006 | WO | 00 | 9/16/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/056302 | 5/18/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3470876 | Barchilon | Oct 1969 | A |
3892228 | Mitsui | Jul 1975 | A |
4719924 | Crittenden et al. | Jan 1988 | A |
4898577 | Badger et al. | Feb 1990 | A |
4921482 | Hammerslag et al. | May 1990 | A |
4985022 | Fearnot et al. | Jan 1991 | A |
4998916 | Hammerslag et al. | Mar 1991 | A |
5002041 | Chikama | Mar 1991 | A |
5037391 | Hemmerslag et al. | Aug 1991 | A |
5108368 | Hammerslag et al. | Apr 1992 | A |
5203772 | Hemmerslag et al. | Apr 1993 | A |
5254088 | Lundquist et al. | Oct 1993 | A |
5336182 | Lundquist et al. | Aug 1994 | A |
5342299 | Snoke et al. | Aug 1994 | A |
5364351 | Heinzelman et al. | Nov 1994 | A |
5372587 | Hammerslag et al. | Dec 1994 | A |
5378234 | Hammerslag et al. | Jan 1995 | A |
5389073 | Imran | Feb 1995 | A |
5391147 | Imran et al. | Feb 1995 | A |
5395327 | Lundquist et al. | Mar 1995 | A |
5395328 | Ockuly et al. | Mar 1995 | A |
5397304 | Truckai | Mar 1995 | A |
5431168 | Webster, Jr. | Jul 1995 | A |
5456664 | Heinzelman et al. | Oct 1995 | A |
5478330 | Imran et al. | Dec 1995 | A |
5484407 | Osypka | Jan 1996 | A |
5520222 | Chikama | May 1996 | A |
5531686 | Lundquist et al. | Jul 1996 | A |
5533967 | Imran | Jul 1996 | A |
5588964 | Imran et al. | Dec 1996 | A |
5656029 | Imran et al. | Aug 1997 | A |
5792074 | Turkel et al. | Aug 1998 | A |
5797842 | Pumares et al. | Aug 1998 | A |
5803083 | Buck et al. | Sep 1998 | A |
5876373 | Giba et al. | Mar 1999 | A |
6027473 | Ponzi | Feb 2000 | A |
6030360 | Biggs | Feb 2000 | A |
6033378 | Lundquist et al. | Mar 2000 | A |
6120476 | Fung et al. | Sep 2000 | A |
6123699 | Webster, Jr. | Sep 2000 | A |
6126649 | VanTassel et al. | Oct 2000 | A |
6146355 | Biggs | Nov 2000 | A |
6171277 | Ponzi | Jan 2001 | B1 |
6183463 | Webster, Jr. | Feb 2001 | B1 |
6213974 | Smith et al. | Apr 2001 | B1 |
6224587 | Gibson | May 2001 | B1 |
6491681 | Kunis et al. | Dec 2002 | B1 |
6500167 | Webster, Jr. | Dec 2002 | B1 |
6530913 | Giba et al. | Mar 2003 | B1 |
6554794 | Mueller et al. | Apr 2003 | B1 |
6579279 | Rabiner et al. | Jun 2003 | B1 |
6585718 | Hayzelden et al. | Jul 2003 | B2 |
6648875 | Simpson et al. | Nov 2003 | B2 |
6783510 | Gibson et al. | Aug 2004 | B1 |
6860876 | Chen | Mar 2005 | B2 |
7128718 | Hojeibane et al. | Oct 2006 | B2 |
7763012 | Petrick et al. | Jul 2010 | B2 |
20050049574 | Petrick | Mar 2005 | A1 |
20050209557 | Carroll et al. | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
2000-126301 | May 2000 | JP |
2001-009042 | Jan 2001 | JP |
WO 2007056302 | Nov 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090043299 A1 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
60734706 | Nov 2005 | US |