The present disclosure relates to improvements in bullets, and in particular, to an improved bullet with a reinforced core.
The statements in this section merely provide background information related to the present disclosure, and may not constitute prior art.
Considerable effort is devoted to the design of bullets to improve their performance. These efforts include designs to improve mass retention of the bullet after it strikes its target, to maximize the impact of the bullet on the target. These efforts also include designs to improve expansion of the bullet after it strikes its target, to maximize damage to the target. Despite these efforts, improvements are still needed, in particular, to maintain bullet performance at higher bullet velocities.
Generally, embodiments of this invention provide an improved bullet with a reinforced core, and methods of making such bullets. In a preferred embodiment, the bullet comprises a core of a dense metal or metal alloy. An inner jacket at least partially surrounds and is bonded to the core. An outer jacket at least partially surrounds the inner jacket and core.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
A preferred embodiment of a bullet with a reinforced core in accordance with the principles of this invention is indicated generally as 20 in the Figures. Bullet 20 has an ogival tapered nose portion 22 at the front end and a heel 24 at the opposite end. The bullet 20 preferably has a hollow point 26, with a plurality of lines of weakness 28 so that the bullet can expand upon impact with the target, as shown in
The inner core body 34 is preferably made of lead or a lead alloy. However, the inner core body 34 could be some other dense metal or material. Because of environmental concerns, for at least some applications, the inner core body 34 can be lead-free, for example comprising tin, tin alloys, tungsten, or tungsten alloys.
The inner jacket 36 is preferably made of copper or a copper alloy. The inner jacket 36 preferably comprises a drawn copper cup 38 in which a pre-formed inner core body 34 is bonded (
The outer jacket 30 is preferably made of copper or a copper alloy. The outer jacket 30 is preferably a drawn cup 40 (
The lines of weakness 28 allow the portion of the outer jacket 30 over the front portion 22 of the bullet 20 to expand and form a plurality of petals 42 (
The lines of weakness 28 also allow the inner jacket 36 to expand and form a plurality of petals 48, which are generally aligned with the petals 42. Like petals 42, petals 48 each have a bend 50 therein, corresponding to the portion of the jacket at the front 22 of the bullet, and a point 52. Because the inner jacket 36 is bonded to the inner core body 34, the petals 48 pull material from the inner core body 34 with them as they expand. Thus the petals 48 tend not to expand as much as the petals 42, so that their points 52 are offset from the points 46. Furthermore, the petals 48 tend to protect the petals 42, preventing them from expanding too far and/or tearing off.
The bullet 20 is preferably fabricated by inserting a pre-formed inner core body 34 into a pre-formed cup 38 that is the precursor of the inner jacket 36. The inner core body 34 and cup 38 are heated to bond the inner core body 34 in the cup 38, indicated generally as 54 in
The core and cup combination 54 and the cup 40 are compressed in a die, which simultaneously forms a frustoconical depression 60 in the closed ends of the cups 38 and 40, mechanically bonds the cups and thus, the inner and outer jackets 30 and 36, and wraps the open ends of the cups around the back end of the inner core body 34. The bullet after this operation is shown in
In the next step, the bullet is pressed in a die to form score lines 62 in the frustoconical depression 60 in the closed ends of the cups 38 and 40, which form the lines of weakness 28 in the outer jacket 30 and the inner jacket 36. The bullet after this operation is shown in
In the next step, the bullet is pressed in a die to form the ogival taper in the front 22 end of the bullet. The bullet after this operation is shown in
The resulting bullet 20 is adapted to be fired at higher speeds, because of the reinforced core 32 (specifically the bonded inner jacket 26), and the thicker outer jacket 30. The outer jacket 30 opens into a plurality of pointed petals 42 that damage the target. The inner jacket 36 similarly opens into petals 48, which because of the bonding with the inner core body 34, pull core material with them. This helps reinforce the petals 42 of the outer jacket, and provides a second set of pointed petals 48. Because of the bonding between the inner core body 34 and the inner jacket 26, the bullet 20 retains substantially all of its weight.
The material from which each of the cups 38 and 40 (and thus each of the jackets 30 and 36) is made, could be the same, but they could be different, to provide different mechanical properties to the bullet 20. The materials can also be different, or treated differently (for example by surface treatment, oxide coating, plating, polishing, etc.) to impart a unique appearance to the bullet (particularly in its upset or fired state). Thus, the colors of the inner jacket 36 and the outer jacket 30 can be different, so that the petals 42 and 48 have different colors, or are otherwise visually different. For example the cup 38 could be made of, or the interior could be plated with, a brass-colored metal alloy, while the cup 40 could be made of, or the interior could be plated with a copper-colored metal alloy. Alternatively, one of the cups could be made of, or plated with, a silver-colored alloy. While it is particularly desirable that the visible surfaces of the petals 42 and 48 (which correspond to the inside of the cups 38 and 40) contrast, the exteriors of the cups 38 and 40 could alternatively or additionally be provided with a contrasting appearance as well.
In an alternate preferred embodiment, at least one of the cup 38 or 40 can formed with at least mechanical retainer to facilitate engagement between the inner and outer jackets 30 and 36. This helps prevent separation of the inner and outer jackets 30 and 36, particularly during high velocity impacts, thereby preserving bullet mass.
Thus in accordance with a first alternate preferred embodiment, an alternative cup 40′ is used, which is provided with a shoulder 64 formed therein. Thus, when the core and cup combination 54 and the cup 40′ are compressed in a die, the shoulder 64 forms a corresponding mating shoulder 66 in the outer surface of the core and cup combination 54. The mating shoulders 64 and 66 help retain the inner jacket and core in the outer jacket when the bullet strikes a target, and the petals on the outer jacket open. Thus, the bullet retains more of its mass.
While the shoulder 64 can be formed perpendicular to the axis of the cup 40′, such as by machining, this would be difficult, time consuming, and expensive. Thus, as shown in
The shoulders face away from the front of the bullet, and are preferably spaced sufficiently from the front of the jackets 36 and 30, that they do not interfere with the cuts that for the petals. In the cup 40′ shown in
The shoulders of this preferred embodiment are preferably spaced about 0.5 to 0.7 inches from the end of the cup. They provide a change in diameter of at least about 2%. The shoulder preferably has an angle of at least about 10°, and more preferably between about 15° and about 20°.
As shown in
This application is a continuation of U.S. patent application Ser. No. 12/505,177, filed Jul. 17, 2009, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/083,651, filed Jul. 25, 2008. The disclosures of both above-referenced applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61083651 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12505177 | Jul 2009 | US |
Child | 13887515 | US |