1. Technical Field
The present invention relates to a catheter for use in delivering a medical interventional device to a target site within the body of a patient. More particularly, the invention relates to a reinforced delivery catheter for delivering a stent to a target site within the vasculature of a patient.
2. Background Information.
In modern medicine, interventional devices are often percutaneously introduced into the body of a patient via a suitable delivery apparatus, and delivered to a target site within the body for a medical purpose. One common example of an interventional device is a stent. A stent is typically inserted into the lumen of a vessel or other bodily passageway to reinforce, repair, or otherwise provide support to maintain the patency of the lumen. For example, in cardiovascular surgery a stent may be placed in the coronary artery at a location where the artery is weakened, damaged or otherwise susceptible to collapse. The stent, once in place, reinforces that portion of the artery, thereby allowing normal blood flow through the vessel.
One form of stent which is particularly desirable for implantation in arteries and other body lumens is a cylindrical stent which is radially expandable upon implantation from a smaller first diameter to a larger second diameter. Radially expandable stents are typically loaded onto, or into, a delivery catheter, and fed internally through the arterial pathways of the patient until the unexpanded stent reaches the target site. Radially expandable stents are normally of two general types. One type, generally referred to as a “balloon-expandable” stent, is fitted in a compressed state over an uninflated balloon at the distal end portion of the delivery catheter. Once the catheter reaches the target site, the balloon is inflated by transmitting an inflation fluid through a lumen in the delivery catheter to the interior of the balloon. Upon inflation, the balloon exerts a radial pressure on the stent, thereby causing the compressed stent to radially expand to a larger diameter. Following expansion, the stent exhibits sufficient radial rigidity to remain in the expanded condition after the balloon has been deflated and the catheter has been removed.
The other type of radially expandable stent, generally referred to as a “self-expanding” stent, is formed from a resilient or shape memory material which is capable of self-expanding from a compressed state to an expanded state without the application of a radial outwardly-exerted force on the stent. Typically, a self-expanding stent is loaded into a delivery device that restrains the stent in the compressed state. Once the delivery device is directed to the target site, an ejection mechanism, such as a pusher, is utilized to eject the stent from the distal end of the delivery device. Alternatively, an outer sheath of the delivery device is withdrawn such that it no longer covers the stent. In either event, once the stent is freed from the restraints of the device, it self-expands to the desired diameter.
The use of radially expandable stents advantageously allows the physician to insert relatively smaller diameter medical devices to reinforce or otherwise support relatively larger diameter vessels. However, the delivery of such stents to the target site has at times proven to be problematic. For example, the structure of a conventional delivery catheter may cause the catheter shaft to be subject to stress risers upon insertion of the shaft into a vessel. This can be particularly troublesome in delivery catheters of the type used to support balloon-expandable stents. Stress risers comprise weakened segments of the catheter which may cause the catheter shaft to undesirably bend, kink, or otherwise fail during insertion. Self-expanding stents, on the other hand, generally require the inclusion of an outer sheath or like structure to hold the stent in its compressed condition, and may require a pusher mechanism to force the stent out of the sheath at the site of expansion. The addition of an outer sheath adds bulk to the introducer apparatus, and increases its diameter. Any increase in the diameter of the introducer apparatus is inherently undesirable because it limits the size of the body vessel into which the apparatus can be introduced. Additionally, the necessity to include an outer sheath and pusher mechanism, along with the necessity to form the stent from the requisite expandable material, may add an undesirable level of complexity and cost to the assembly.
It is desired to provide a catheter for a self-expandable stent or other interventional medical device that avoids the problems of prior art devices.
The problems of the prior art are addressed by the features of the present invention. In one form thereof, the invention comprises a catheter for delivering an interventional device to a target site within the body of a patient. The catheter comprises an elongated shaft having a plurality of lumens extending longitudinally therein. The shaft has a proximal length defining at least two lumens, an intermediate length defining fewer lumens than the proximal length, and a distal length. The distal length is configured for carrying the interventional device. A stiffening member is incorporated into or onto at least a portion of the intermediate length of the shaft. The stiffening member is positioned along the shaft to increase the stiffness of the intermediate length portion relative to the stiffness of at least one of the proximal length and the distal length.
In another form thereof, the invention comprises a catheter for delivering a radially expandable interventional device to a target site within the body of a patient. The catheter includes an elongated shaft having a first length, a second length, and a third length. The first length extends from the proximal end toward the distal end of the shaft. The second length is distal to the first length, and the third length is distal to the second length. The shaft includes first and second lumens. An inflatable balloon spans at least a portion of the second and third lengths. The balloon is configured for carrying the interventional device in a radially compressed condition along at least the third length when the balloon is uninflated, and for radially expanding the interventional device when the balloon is inflated. The first lumen extends from the proximal end along the first length. A distal open end of the first lumen communicates with an interior of the balloon. The second lumen extends from the proximal end to the distal end along the respective first, second and third lengths. A stiffening member is embedded in the shaft along the second length.
In yet another form thereof, the invention comprises a catheter comprising an elongated shaft and a stiffening member. The elongated shaft has a proximal length, an intermediate length, and a distal length. The proximal length extends from the proximal end toward the distal end of the shaft. The intermediate length is distal to the proximal length, and the distal length is distal to the intermediate length. The intermediate length has a stiffness less than a stiffness of the proximal and distal lengths. The stiffening member is positioned at the shaft intermediate length. The stiffening member is sized and positioned along the shaft to increase the stiffness of the intermediate length relative to the stiffness of the proximal length and the distal length.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings, and specific language will be used to describe the same. It should nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device, and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates.
In the following discussion, the terms “proximal” and “distal” will be used to describe the opposing axial ends of the delivery catheter, as well as the axial ends of various component features. The term “proximal” is used in its conventional sense to refer to the end of the catheter (or component thereof) that is closest to the operator during use of the catheter. The term “distal” is used in its conventional sense to refer to the end of the catheter (or component thereof) that is initially inserted into the patient, or that is closest to the patient during use.
Shaft 102 of prior art catheter 100 includes dual lumens (not shown) extending longitudinally therethrough. One of the lumens is configured for carrying an inflation fluid from an inflation source to the interior of balloon 110. This lumen terminates at a point 104 proximal to the distal end of shaft 102, and communicates with the interior space of balloon 110. The other lumen serves as a conduit for a wire guide. This lumen extends longitudinally through the entire length of the shaft to distal end 106. The proximal portion of delivery catheter 100 is conventional, and need not be further shown and described to gain an understanding of the present invention.
The structure of the distal portion of conventional delivery catheter 100 illustrated in
As illustrated in
In the preferred embodiment shown, stiffening rod 30 comprises a wire or other generally elongated member that is embedded within the body of shaft 12. The rod preferably has a length such that it spans at least a portion of the shaft extending from lumen terminal point 14 to the proximal end of the stent. (
Preferably, the stiffening member, such as stiffening rod 30, is formed from a biocompatible metal, metal alloy, multi-filar material, or composite material. The stiffening member should be formed from a composition that is capable of providing sufficient strength to enhance the stiffness of a length of a catheter, such as length “B” in catheter 100, in a manner such that the stiffness of the reinforced length at least approximates that of one or more adjoining lengths, such as one or both of lengths “A” and “C” of catheter 100. Non-limiting examples of particularly suitable stiffening rod compositions include stainless steel and shape memory compositions such as nitinol. These compositions are widely used in medical devices, and a skilled artisan can readily craft an appropriate stiffening member from such compositions.
In most cases, it is expected that the stiffening member will have a diameter between about 0.001 and 0.006 inch [0.0254 and 0.152 mm], although other diameters may also be appropriate for a particular case. If desired, the rod can be tapered in the distal direction. The preferred diameter in any particular case will depend, of course, upon the diameter of the shaft. The stiffening member may have any cross-sectional profile, including round, flat, oval, etc. In order to minimize the profile of the stiffening member, a flat wire configuration will typically be preferred. Those skilled in the art will appreciate that the compositions and dimensions described herein are exemplary only, and that other compositions and dimensions may be substituted in an appropriate case to achieve enhanced stiffness as described herein.
Delivery catheters are well known in the art, and shaft 12 can be formed of virtually any composition commonly utilized for such purposes. In a preferred embodiment, shaft 12 may comprise a layered structure comprising an inner liner of a lubricious polymer, such as polytetrafluoroethylene (PTFE), and an outer layer of a polymeric material, such as a polyether block amide (PEBA) or nylon. Preferably, the outer layer is a heat shrinkable tubular material, and the stiffening rod is embedded in the heat shrinkable (e.g., PEBA) layer by melting the layer around the rod in a manner such that the rod is embedded therein as shown in the figures. Techniques of embedding a member, such as stiffening rod 30, in a heat shrinkable tubular material are known in the art, and it is believed that virtually any such technique can be used to embed stiffening rod 30 in a fashion to provide reinforcement as described. Other suitable methods of incorporating, inserting, adhering, or otherwise retaining a stiffening member in a designated length of a shaft may be substituted.
The shaft can have a single durometer along its length, or it may have sections of varying durometers, typically aligned in descending fashion from a high durometer (e.g., high stiffness) at its proximal end to a low durometer (low stiffness) at its distal end, in well-known fashion. In addition, the shaft can include one or more radiopaque markers positioned along its length in well-known fashion.
Although illustrated herein in connection with a dual lumen shaft having side-by-side lumens, the use of a stiffening member as described herein is not limited to shafts having this configuration. For example, the shaft may have more than two lumens, and may be structured such that at least one of the lumens has a terminal point along its length (e.g., lumen terminal point 14), proximal to a terminal point of at least one other lumen or any other more distal segment of the shaft. In addition to the foregoing, a stiffening member may be used in similar fashion in connection with a coaxial dual lumen shaft, or any other multiple lumen shaft construction.
Furthermore, the use of a stiffening member as described herein is not limited to use with multi-lumen delivery catheters as described. Rather, a stiffening member may also be used to enhance the stiffness of a designated segment of any catheter or medical device that includes segments having relative stiffnesses that differ along the length of the device. Such segments will often be found at a portion of the device wherein a change of construction occurs, such as the lumen terminal point 14 described in the non-limiting example hereinabove. In devices having such segments of different stiffnesses, the stiffening member may simply be inserted, embedded, adhered, or otherwise added to the device along all, or at least some, of the length of a segment of lesser stiffness.
It is therefore intended that the foregoing detailed description be regarded as illustrative rather than limiting, and that it be understood that it is the following claims, including all equivalents, that are intended to define the spirit and scope of this invention.