The disclosure of the present patent application relates to structural joints, and particularly to a reinforced joint for beam-column connection in a steel frame building that uses steel plates welded in the area about the beam-column connection to develop catenary action in the beams in the event of column failure.
Building frames, such as typical steel building frames, are often exposed to extreme load events, such as those caused by large wind forces, earthquakes, vehicle crashes and blast loads. The ability of steel to yield under external forces is one of the reasons that steel is seen as an ideal building material for structural frames. However, steel buildings are still susceptible to progressive collapse under extreme conditions due to exposure to blast loads. The performance of steel-framed buildings primarily depends on the behavior of the frame's beam-column joints. The properties of the joints are crucial in a steel-framed building, since they determine the constructability, stability, strength, flexibility, residual forces, and ductility of the overall structure.
Progressive collapse is the propagation of an initial local failure from one part of the building to the adjoining parts, resulting in the eventual collapse of the entire building, or at least large parts thereof. In order to resist progressive collapse of buildings, the “alternate path” method is typically employed in the design. In this method, alternate paths are available for load transfer if one critical component, such as a column, fails, thus preventing progressive collapse. If a column of a building frame fails (due to a blast or seismic forces, for example), steel-framed buildings should have well-defined redundancies so that alternative load paths are available via the formation of catenary action. Unfortunately, effective alternative load paths via catenary action are frequently lacking in present building designs.
Thus, a reinforced joint for beam-column connection solving the aforementioned problems is desired.
The reinforced joint for a beam-column connection is provided for improving the resistance of steel-framed buildings against progressive collapse, such as may be caused by damage to one or more columns as a result of exposure to blast loads or other extreme loads. In one embodiment, in which the reinforced joint for a beam-column connection is used as an internal joint in the building frame, first upper and lower flange stiffening plates are respectively attached to inner faces of the upper and lower flanges of a first structural beam (as well as being connected to a column flange). Similarly, second upper and lower flange stiffening plates are respectively attached to inner faces of upper and lower flanges of a second structural beam (as well as being connected to an opposed column flange), where the first and second structural beams extend in opposite directions from a column at the center of a connection joint between the first and second structural beams and the column.
At least one first beam web stiffener is attached to and extends between the first upper and lower flange stiffening plates, and at least one second beam web stiffener is attached to and extends between the second upper and lower flange stiffening plates. Upper and lower column web stiffeners are also attached to and extend between first and second flanges of the structural column. The upper and lower column web stiffeners are respectively aligned with the first and second upper flange stiffening plates and with the first and second lower flange stiffening plates. A cover stiffening plate is attached to the upper and lower column web stiffeners, the first and second upper flange stiffening plates, and the first and second lower flange stiffening plates. The cover stiffening plate extends between the at least one first beam web stiffener and the at least one second beam web stiffener.
In an alternative embodiment, in which the reinforced joint for a beam-column connection is used as an external joint in the building frame, upper and lower flange stiffening plates are respectively attached to inner faces of upper and lower flanges of a structural beam. The upper and lower flange stiffening plates are positioned adjacent a connection joint between the structural beam and a structural column. At least one beam web stiffener is attached to, and extends between, the upper and lower flange stiffening plates.
Additionally, upper and lower column web stiffeners are attached to and extend between first and second flanges of the structural column. The upper and lower column web stiffeners are aligned with the upper and lower flange stiffening plates, respectively. A cover stiffening plate is attached to the upper and lower column web stiffeners and the upper and lower flange stiffening plates. The cover stiffening plate extends between the at least one beam web stiffener and the second flange of the structural column. The stiffeners and stiffening plates are preferably attached to the corresponding flanges and web by welding.
These and other features of the present disclosure will become readily apparent upon further review of the following specification and drawings.
Similar reference characters denote corresponding features consistently throughout the attached drawings.
Referring to
Each of the flange stiffening plates 18, 20, 22, 24 may have a length of k Db+g, a width of (Bf,c−wr,b)/2 and a thickness greater than or equal to tf,b, where k=2 to 2.5, Db is the depth of each of the structural beams of set 12, g is the gap between the end of each of the structural beams of set 12 and the face of the structural column 14, Bf,c is the width of the flanges of the structural column 14, tw,b is the thickness of the web of each of the structural beams of set 12, and tf,b is the thickness of each flange of each of the structural beams of set 12. Each of the flange stiffening plates 18, 20, 22, 24 may have chamfered or filleted corners. Further, each of the flange stiffening plates 18, 20, 22, 24 may be formed from steel or the like. Additionally, it should be understood that the connection between the first and second structural beams 28, 30 and structural column 14 shown in
In reference to
As shown in
As discussed above, although the reinforced joint 10 is only described above with reference to the structure on one side of joint 32, this is solely for purposes of simplification and illustration and, in practice, an identical structure is formed on the rear side of joint 32. Thus, as an alternative, the upper flange stiffening plates 18, 22 may each be replaced by wider plates mounted on the exterior faces of flanges 26, 34, extending across the entire width of each flange. Similarly, the lower flange stiffening plates 20, 24 may each be replaced by wider plates mounted on the exterior faces of flanges 29, 36, extending across the entire width of each flange. The width of each of these alternative plates would match the width of the flanges 50, 52 of structural column 14. As a further alternative, both interior and exterior flange stiffening plates may be used in combination.
At least one first beam web stiffener is secured to, and extends between, the first upper and lower flange stiffening plates 18, 20, and at least one second beam web stiffener is secured to, and extends between, the second upper and lower flange stiffening plates 22, 24. In
Upper and lower column web stiffeners 46, 48, respectively are also attached to and extend between first and second flanges 50, 52, respectively, of the structural column 14. The upper and lower column web stiffeners 46, 48 may be welded to first and second flanges 50, 52. The upper and lower column web stiffeners 46, 48 are respectively aligned with and coplanar to the first and second upper flange stiffening plates 18, 22 and with and coplanar to the first and second lower flange stiffening plates 20, 24. Each of the column web stiffeners 46, 48 may have a length of Dc−2tf,c, a width of (Bf,c−tw,b)/2 and a thickness of t, where Dc is the depth of structural column 14, Bf,c is the width of the flanges of structural column 14, and t is the thickness of the web stiffeners 38, 40, 42, 44. Further, each of the column web stiffeners 46, 48 may be formed from steel or the like.
A longitudinal cover stiffening plate 54 is attached to the upper and lower column stiffeners 46, 48, the first and second upper flange stiffening plates 18, 22, and the first and second lower flange stiffening plates 20, 24 by welding or the like. The cover stiffening plate 54 extends between the at least one first beam web stiffener and the at least one second beam web stiffener. In the exemplary embodiment of
As shown in
Further, as shown, at least one exterior stiffening plate may be secured to an exterior face 61 of the cover stiffening plate 54 opposite the column flanges by welding or the like. In
With reference to
Table 1, below, shows the enhancement of the moment of inertia and shear area in each of these regions, before reinforcement (i.e., without the reinforced joint 10) and with reinforcement (i.e., with the reinforced joint 10). In Table 1, Ib is the moment of inertia of each beam of the set 12 of structural beams, Aw is the shear area of each beam of the set 12 of structural beams, and α and β are the moment and shear enhancement factors, respectively. As can be seen in Table 1, the shear capacity is more than doubled in the connection zone. The increase in moment of inertia causes a proportionate increase in the elastic moment of resistance. However, the enhancement in the ultimate moment of resistance will be much higher due to the presence of strain hardening in the stress-strain behavior of steel beams. The enhancement in the moment and shear capacity of the joint not only helps to increase the load-resisting capacity of the frame, but also helps in the development of the catenary mechanism in the event of column loss, thereby enhancing the progressive collapse resistance of the frame.
As shown in
Additionally, upper and lower column web stiffeners 146, 148 are attached to and extend between the first and second flanges 150, 152 of the structural column 114. The upper and lower column web stiffeners 146, 148 are aligned with and coplanar to the upper and lower flange stiffening plates 118, 120, respectively. Each of the column web stiffeners 146, 148 may have a length of Dc−2tf,c, a width of (Bf,c−tw,b)/2 and a thickness of t, where Dc is the depth of structural column 114, Bf,c is the width of the flanges of structural column 114, tf,c is the thickness of the flange of structural column 114, tw,b is the thickness of the web of structural beam 112 and t is the thickness of the web stiffeners 138, 140. Further, each of the column web stiffeners 146, 148 may be formed from steel or the like.
A longitudinal cover stiffening plate 154 is attached to the upper and lower column stiffeners 146, 148 and the upper and lower flange stiffening plates 118, 120. The cover stiffening plate 154 extends between the at least one beam web stiffener and the second flange 152 of the structural column 114. In the exemplary embodiment of
As shown in
It is to be understood that the beam-column connections for steel framed buildings is not limited to the specific embodiments described above, but encompasses any and all embodiments within the scope of the generic language of the following claims enabled by the embodiments described herein, or otherwise shown in the drawings or described above in terms sufficient to enable one of ordinary skill in the art to make and use the claimed subject matter.
Number | Name | Date | Kind |
---|---|---|---|
2720291 | Larkin | Oct 1955 | A |
5660017 | Houghton | Aug 1997 | A |
6138427 | Houghton | Oct 2000 | A |
9091065 | Tran | Jul 2015 | B2 |
10415230 | Abbas et al. | Sep 2019 | B1 |
20020124520 | Bock | Sep 2002 | A1 |
20050204684 | Houghton | Sep 2005 | A1 |
20060144006 | Suzuki | Jul 2006 | A1 |
20110030305 | Karns | Feb 2011 | A1 |
20140083046 | Yang | Mar 2014 | A1 |
20140182234 | Yang | Jul 2014 | A1 |
20150275501 | Houghton | Oct 2015 | A1 |
20180266099 | Lippert | Sep 2018 | A1 |
20180347222 | Richards | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
105863056 | Aug 2016 | CN |
11170044 | Jun 1999 | JP |
Entry |
---|
Crawford, John E. “Retrofit methods to mitigate progressive collapse.” The Multihazard Mitigation Council of the National Institute of Building Sciences, Report on the Jul. 2002 National Workshop and Recommendations for Future Effort. 2002. |