The invention relates to a reinforced longitudinal beam for a railway vehicle and a railway vehicle with such a longitudinal beam.
Today railway vehicles, in particular passenger vehicles, are in practice only constructed as self-supporting metal structures. A vehicle body comprising a substructure, side walls, end walls and a roof is constructed. The substructure must withstand operating forces, in particular loading, clutch pressure and tensile forces. For this reason the substructure is frequently designed as a frame and usually comprises two external longitudinal beams as well as several cross-members connecting these longitudinal beams and is reinforced at the ends of the vehicle.
The economic production of railway vehicles requires a high level of automation during manufacture. In particular, the production of a large number of welded connections should be automated. Consequently, today automated production of the substructures, side walls and the roof already takes place on suitable welding machines. The connection of the substructure to the side walls or the side walls to the roof can currently only be performed partially by means of automatic welding, as all known welding machines must be able to readily access the welded seams. However, the welded seams between the substructure and the side walls or between the side walls and the roof inside the wagon body are only accessible with difficulty and must be produced manually. In order to provide connection points which can be welded using automation, WO 2011/038751 A1 discloses a divided longitudinal beam, wherein one part of said longitudinal beam is welded to one major component (substructure, side wall or roof) in each case, and which has straight, readily accessible connection points which can be welded using automation when the associated major component is added. If this solution is used for the side wall/substructure connection point, then penetration of the cross-members of the substructure into the part of the longitudinal beam which is assigned to the substructure is necessary. These penetrations require that one of the welds which connect the two parts of the longitudinal beam to a closed profile must be interrupted at these connection points. This penetration cannot be omitted in such a longitudinal beam for reasons of strength, however.
An object is to specify a longitudinal beam for railway vehicles which permits the automated welding of the connection points between the major components (substructure, side walls, roof) of a railway vehicle, wherein the longitudinal beam is so strong that the penetration of the longitudinal beam by the cross-members of the substructure can be omitted.
The object is achieved by a longitudinal beam as claimed in the independent claim. Advantageous embodiments are the subject of subordinate claims.
According to the fundamental idea of the invention, a longitudinal beam is constructed for railway vehicles, which is divided in the longitudinal axis into a first partial beam and a second partial beam, wherein in each case a partial beam is fastened to a major component (substructure, side walls, floor) assigned to this partial beam. Both the partial beams are designed in such a way that they can be combined to form a longitudinal beam and can be connected to each other by means of welded connections, wherein both the partial beams together produce a longitudinal beam with a closed profile. One of the two partial beams is designed with an end facing so that this partial beam has an essentially triangular profile.
This makes the advantage of being able to connect major components of railway vehicles by means of straight and unbroken welded seams attainable, wherein these welded seams are readily accessible. As a result, welding machines can be used, which makes the production of railway vehicles faster and less expensive.
In addition, it is advantageous that a longitudinal beam with an end facing constructed in this way is essentially more rigid and more stable than the usual longitudinal beam with a U-profile or a cap profile or the longitudinal beam composed of partial beams, wherein by means of the end facing according to the invention of one of the partial beams a particularly high strength is achieved.
If necessary, a longitudinal beam according to the invention can be composed of metal with a thin wall thickness, resulting in advantages in terms of weight compared to standard longitudinal beams.
A major advantage of the invention is the reduction in penetration of one of the partial beams by the cross-members of the substructure. As a result this partial beam can be produced with fewer processing steps and can therefore be produced more rapidly and inexpensively. This penetration is necessary in divided longitudinal beams in order to ensure optimum transmission of force between a side-wall column and a cross-member. As a result of the increased strength of a longitudinal beam fitted with an end facing, it is no longer necessary. Consequently, the internal welded seam which connects the two partial beams to the side of the longitudinal beam facing the inside of the vehicle can be straight and unbroken over the entire length of the longitudinal beam. Such welded seams can also be produced by welding machines, which further favors the production of a railway vehicle.
A further major advantage of the invention is the improved transmission of forces between the connected major components. In particular, an offset in the longitudinal axis of the vehicle between the cross-members and the side-wall beams which is produced by the tolerances of vehicle manufacture is no longer disadvantageous as the flow of power is also ensured by means of the increased strength in the case of longitudinal offsetting.
In a further development of the invention recesses (perforations) are provided, which can typically be provided in the end facing and/or a bridge of a partial beam. As a result the interior of a reinforced longitudinal beam according to the invention is also accessible after closing the profile so that, for example, rust inhibitor or paints can be introduced via these perforations. In vehicles made of non-rusting materials these perforations are not necessary but can nonetheless be provided in order to save weight.
The partial beams are produced advantageously from sheet metal with the aid of bending methods. It is also possible to produce the partial beams by means of an extrusion method, wherein the welded seam to close the profile of the first partial beam is no longer necessary. These extrusion methods are suited in particular to the production of partial beams made of light metal.
The figures show:
In addition, a first assembly A and a second assembly B are shown in order to clarify the installation position of a longitudinal beam according to the invention. The partial beams 1, 2 are first connected to the respectively assigned assembly A, B and subsequently to each other by means of the welded seams 6, 7.
A first assembly A is connected to a second partial beam 2 at its upper and lower ends respectively. Two second assemblies B (a substructure, a roof) are each equipped with a reinforced first partial beam 1 at the connecting line to the first assembly A. In this way the aforementioned assemblies can be connected to each other via straight, unbroken welded seams 6, 7 (
Number | Date | Country | Kind |
---|---|---|---|
A686/2010 | Apr 2010 | AT | national |
This application is the US National Stage of International Application No. PCT/EP2011/055745 filed Apr. 13, 2011, and claims the benefit thereof. The International Application claims the benefits of Austrian Application No. A 686/2010 AT filed Apr. 26, 2010. All of the applications are incorporated by reference herein in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/055745 | 4/13/2011 | WO | 00 | 10/18/2012 |