1. Field of the Invention
This invention relates generally to the field of plastic containers, and more particularly to plastic containers that require reinforcement against deflection as a result of internal volumetric changes or the weight of the contents of the container.
2. Description of the Related Technology
Plastic containers such as those that are manufactured using the extrusion blow molding process need to possess the requisite strength to limit sidewall and bottom deflection to stay within predetermined tolerances in response to forces that are applied during the filling process and during handling within the supply chain and by the consumer. Hot fill type plastic containers typically include vacuum panel areas having vacuum panels specifically designed to accommodate deflection as a result of the volumetric expansion and contraction that occurs during the filling process. However, it is desirable to minimize deflection in sidewall and bottom portion areas of a hot fill container other than in the vacuum panels in order to preserve the structural integrity of the container.
The bottom portion of a plastic container also needs to process sufficient strength to resist deformation as a result of pressurization changes within the container and from the forces that are applied by the weight of the container contents. In hot fill type containers, it is also important for the bottom portion to have sufficient rigidity so that vacuum uptake is directed mainly to the vacuum panels that are designed for such purposes.
In certain types of plastic containers, such as those that are manufactured using the stretch reheat blow molding process, a certain amount of reinforcement is inherently provided by the concave shape of the bottom portion. Concavity can also be designed into the bottom portion of an extrusion blow molded plastic container, but this sacrifices space efficiency and increases material costs. The extrusion blow molding process permits the fabrication of the container that has a substantially flat bottom. Extrusion blow molded containers that have a substantially rectangular profile when viewed in transverse cross-section have been manufactured with corrugated substantially flat bottoms for use in limiting the deflection of the bottom of the container as a result of the weight of solid materials within the container. However, to the inventor's knowledge no such bottoms have been used when the container that is substantially round when viewed in transverse cross-section, or in hot fill applications.
A need exists to provide a plastic container that effectively directs vacuum uptake to the intended portions of the container, and that limits deflection of the bottom portion as a result of pressurization changes within the container and the weight of the container contents.
Accordingly, it is an object of the invention to provide a plastic container that effectively directs vacuum uptake to the intended portions of the container, and that limits deflection of the bottom portion as a result of pressurization changes within the container and the weight of the container contents.
In order to achieve the above and other objects of the invention, a hot fill type plastic container according to a first aspect of the invention includes a finish portion defining an opening, a bottom portion and a main body portion having a vacuum panel area with at least one vacuum panel defined therein. The vacuum panel is constructed and arranged to deflect in order to accommodate volumetric expansion and contraction during the hot fill process. The main body portion further includes a circumferentially extending reinforcement groove having reinforcement structure provided therein. The circumferentially extending reinforcement groove is positioned substantially adjacent to the vacuum panel area, whereby dimensional distortion of at least part of the main body portion that is adjacent to the vacuum panel area is minimized during hot fill process.
A hot fill type plastic container according to a second aspect of the invention includes a finish portion defining an opening, a bottom portion that is substantially round when viewed in bottom plan and a main body portion having a vacuum panel area with at least one vacuum panel defined therein. The vacuum panel is constructed and arranged to deflect in order to accommodate volumetric expansion and contraction during the hot fill process. The bottom portion is constructed and arranged to include a substantially flat portion having a plurality of alternating parallel ribs and grooves defined therein. As a result, dimensional distortion of the bottom portion is minimized during the hot fill process and deflection as a result of vacuum uptake is directed toward the vacuum panel area.
A polypropylene container according to a third aspect of the invention includes a finish portion defining an opening, a main body portion having a vacuum panel area defined therein and a bottom portion that is fabricated from polypropylene and that is substantially round when viewed in bottom plan. The bottom portion is constructed and arranged to include a substantially flat portion having a plurality of alternating parallel ribs and grooves defined therein. As a result, dimensional distortion of the bottom portion is minimized.
These and various other advantages and features of novelty that characterize the invention are pointed out with particularity in the claims annexed hereto and forming a part hereof. However, for a better understanding of the invention, its advantages, and the objects obtained by its use, reference should be made to the drawings which form a further part hereof, and to the accompanying descriptive matter, in which there is illustrated and described a preferred embodiment of the invention.
Referring now to the drawings, wherein like reference numerals designate corresponding structure throughout the views, and referring in particular to
Plastic container 10 also includes a main body portion 18 having a vacuum panel area 20, each of which includes a vacuum panel 22 having inner portion 24 and an outer portion 26. The vacuum panel area 20 is preferably recessed with respect to an outer sidewall 28 of the main body portion 18. As
The vacuum panel area 20 further includes transition portions 30 that connect the outer portions 26 of the vacuum panels 22 to the outer sidewall 28 of the main body portion 18.
Plastic container 10 further includes a dome or shoulder portion 32 that connects the finish portion 12 to the main body portion 18. In the preferred embodiment, the dome portion 32 is provided with a handle 38 that is constructed and arranged to facilitate a single finger grip.
Container 10 is preferably a round container, meaning that its outermost surfaces as viewed in transverse cross-section are substantially circular. This may best be seen in
The main body portion 18 further preferably includes a circumferentially extending reinforcement groove 34 that has reinforcement structure 36 provided therein. The reinforcement groove 34 imparts additional top load strength of the container 10, as well as hoop strength, meaning that it stabilizes adjacent portions of the sidewall of the container 10 against radial displacement as a result of internal pressurization changes and squeezing forces that may be applied to the container 10 during handling or by a consumer.
The circumferentially extending reinforcement groove 34 is preferably shaped and proportioned the same as those that are disclosed in U.S. patent application Ser. No. 13/483,249, filed May 30, 2012, the entire disclosure of which is hereby incorporated by reference as if set forth fully herein.
The reinforcement groove 34 is preferably positioned substantially adjacent to the vacuum panel area 20 in order to minimize dimensional distortion of the sidewall of the main body portion 18 adjacent to the vacuum panel area 20 during the hot fill process. Preferably, the reinforcement groove 34 is positioned within a distance L1 of the vacuum panel area 20 that is substantially no greater than about 34 millimeters, more preferably substantially no greater than about 22 millimeters and most preferably substantially no greater than about 14 millimeters.
In the preferred embodiment, the reinforcement groove 34 includes a plurality of flutes 40 that are situated within the groove 34. Each of the flutes 40 preferably has a vertical component, and more preferably is oriented so as to be substantially vertical. The reinforcement groove 34 preferably extends about an entire circumference of the main body portion 18.
As
Preferably, a ratio DMIN/DMAX of the minimum depth of the maximum depth is substantially within a range of about 0.1 to about 0.9, more preferably substantially within a range of about 0.2 to about 0.8 and most preferably substantially within a range of about 0.35 to about 0.65.
As
The presence of the circumferentially extending reinforcement groove 34 materially improves both the top load and pressure resistance performance of the container in comparison to a similar container that does not include such a reinforcement groove 34.
Referring now to
Bottom portion 16 further includes a standing ring 50 that in the preferred embodiment extends continuously about an outer periphery of the bottom portion 16 as viewed in bottom plan. The substantially flat portion 52 is preferably positioned within the standing ring 50 and is substantially centered with respect to the standing ring 50. The substantially flat portion 52 moreover preferably occupies at least 75% of the space that is defined within the standing ring 50. A transitional surface 54 is preferably defined between the substantially flat portion 52 and the standing ring 50. The transitional surface 54 is also preferably shaped so as to be substantially symmetrical about the longitudinal axis 25 of the container 10.
As
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
This application claims priority to and is a continuation of U.S. patent application Ser. No. 13/720,569, filed Dec. 19, 2012; and claims priority to and is a continuation-in-part of International Patent Application No. PCT/US13/43385, filed May 30, 2013, which is a continuation of U.S. patent application Ser. No. 13/483,249, filed May 30, 2012, now U.S. Pat. No. 8,783,505, the contents of each of which are hereby incorporated by reference in their entireties and priority to each of which is claimed.
Number | Date | Country | |
---|---|---|---|
Parent | 13483249 | May 2012 | US |
Child | PCT/US13/43385 | US | |
Parent | 13720569 | Dec 2012 | US |
Child | 13483249 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US13/43385 | May 2013 | US |
Child | 14553618 | US |