Reinforced plastic panels and structures

Information

  • Patent Grant
  • 8161711
  • Patent Number
    8,161,711
  • Date Filed
    Monday, February 1, 2010
    14 years ago
  • Date Issued
    Tuesday, April 24, 2012
    12 years ago
Abstract
A partition system may include one or more panels. A panel may be constructed using blow-molded plastic. A panel may include one or more depressions, which may be aligned with one or more depressions on an opposing side of the panel. The depressions may provide additional structural integrity for a panel. The depressions on opposing sides of the panel may extend toward and engage each other. The panels may include patterns with which one or more depressions may intersect. The panels may include symmetric patterns on opposing sides. The partition system may include one or more connectors adapted to receive a portion of one or more panels. The partition system may include one or more feet that may be attached to one or more panels. The panels may include one or more reinforcing members of various shapes disposed proximate one or more edges of a panel.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention generally relates to a partition system and, in particular, to a petition system that may include a plurality of panels or partitions that can be interconnected into a variety of configurations and arrangements.


2. Description of Related Art


It is known to use panels or panel systems to construct a variety of structures such as building partitions, utility sheds, tool sheds, furniture and containers. These known systems typically include one or more connectors that allow one or more panels to be connected.


A known type of connector that is used to connect two panels together are connector members that have a generally I-beam type configuration. In particular, these known connector members may have a generally I-shaped cross-section and each side of the I-beam type connector may be sized and configured to be attached to a panel. For example, one side of the I-beam type connector may form an edge portion that fits within slots in one of the panels. Thus, the sides of the I-beam type connector members may engage the edges of the panels to allow one or more of the panels to be connected. These types of conventional connector members allow the panels to be joined at a right angle or in a straight line.


Disadvantageously, these conventional I-beam type connector members are often elongated members that are difficult to attach to the panels. These elongated connector members are also relatively heavy, difficult to use and difficult to position in the desired locations. It is also known to use other types of connectors to interconnect one or more panels. These connectors, however, often include a number of parts and are complicated to use. In addition, many conventional connectors are constructed from metal, which is heavy and may include sharp edges. These metal connectors, which are typically exposed to the elements, may rust, deteriorate or otherwise weaken over time. Further, these metal components are often bent, twisted, or otherwise deformed from the desired configuration. For example, these metal components may be bent, twisted or deformed during shipping, assembly or use.


The panels used in connection with these known panels systems are made from a wide variety of materials. For example, known panels have been constructed from metal and all or a portion of the panels may be covered with fabric or other types of suitable materials. Disadvantageously, these panels are often heavy, difficult to move and ship, expensive to manufacture, and the panels generally require finishing such as sanding and/or painting.


It is also known to construct panels from materials such as plastic. The plastic panels, however, are often not sufficiently rigid and the panels often create a flimsy structure because the panels do not have adequate structural integrity. The plastic panels may also be difficult to securely interconnect and the plastic panels may buckle or crack.


Disadvantageously, the opposing sides of conventional plastic panels may be different. For example, the design on one side of the panel may be different from the design on the other side of the panel. Thus, the panels are not truly interchangeable because the sides of the panels must be arranged in a particular relationship. For instance, one side of the panels may include various recesses and indentations caused during the manufacturing process. This may create a panel that has a generally smooth surface on one side and an opposing side that includes a number of bumps and bulges. The opposing sides of the panels may also include one or more beams or other similar structures that are designed to increase the strength of the panels. Significantly, the different opposing sides of the panels may limit the usefulness of the panels. In particular, only one side of the panel may be aesthetically pleasing and it may be desirable to hide the other side from view. Accordingly, because conventional panels constructed from plastic often include opposing sides that have different configurations, the usefulness of the panels may be limited. In addition, one or more sides of conventional plastic panels often include imperfections or other types of visual defects that are created during the manufacturing process. This may also limit the usefulness of the panels.


These known plastic panels may be constructed or formed into the desired shapes and sizes using a blow-molding process. As known to those skilled in the art, blow-molded plastic structures often include an outer wall that encloses a hollow interior space. Conventional panels constructed from blow-molded plastic, however, are typically not high-strength components because, for example, of the hollow interior space. In fact, conventional blow-molded panels are often relatively low-strength, which may allow the panels to buckle or fail.


In order to increase the strength of conventional blow-molded structures, it is known to form structures with integral plastic ribs or beams. These ribs are generally large, elongated portions that require thicker outer walls so that the ribs are correctly formed in the structure. Disadvantageously, the thicker outer walls of the ribs require additional plastic materials be used to create the structure, which increases costs and weight. In addition, the thicker outer walls retain more heat during the manufacturing process. Thus, a longer cooling time is required during the manufacturing process in order to allow the thicker outer walls to cool. This undesirably increases the time of the manufacturing process because blow-molded structures cannot be removed from the mold until the structures are sufficiently cooled.


While the large strengthening ribs may be designed to prevent large portions of the blow-molded plastic structures from sagging, the ribs may allow smaller, localized portions of the structure to bend or sag. Additionally, because many strengthening ribs are large and have an elongated length, the ribs may support localized portions of the structure differently than the other portions of the structure. Thus, the opposing surfaces of conventional blow-molded structures may be uneven because different portions of the structures are supported differently.


BRIEF SUMMARY OF THE INVENTION

A need therefore exists for a partition system that eliminates the above-described disadvantages and problems.


One aspect is a partition system that may be used in a wide variety of environments and configurations. For example, the partition system can be used to create various types, sizes, configurations and arrangements of a wide variety of structures such as walls, divides, barriers and the like. The partition systems can also be used to create various types of enclosures such as workstations, offices, cubicles and the like. Advantageously, the partition system may be part of a prefabricated and/or modular system that can be arranged and configured into a variety of suitable arrangements and layouts.


Another aspect is a partition system that may include one or more components and the components are preferably interchangeable. Significantly, this may allow the partition system to be rapidly assembled and easily changed. This may also allow the partition system to create structures that are temporary or permanent. Significantly, these structures can be freestanding and independent from other structures, or the structures can be attached or secured to one or more other structures.


In addition, while a frame may be used to connect and/or assembly the partition system, a frame is not required.


Still another aspect is a partition system that may include one or more panels that may have various sizes and configurations. For example, the panels may be sized and configured to construct workstations or office cubicles. Thus, the panels may be five or six feet in height and two or three feet in width to allow workstations or office cubicles to be easily constructed. The panels, however, may have any desired size and configuration depending, for example, upon the intended use of the panels. In addition, while the panels are preferably rectangular in configuration, the panels may be square, curved, rounded or have other suitable shapes depending upon the intended use of the partitions.


Yet another aspect is a partition system that may include one or more partitions that are constructed from plastic. In particular, the partitions are desirably constructed from blow-molded plastic which includes two opposing surfaces in a hollow interior portion. The opposing surfaces are preferably separated by a generally constant distance, but the distance between the surfaces may also vary. Advantageously, panels constructed from blow-molded plastic may be lightweight, durable, rust-resistant and generally weather resistant.


A further aspect is a partition system that may include one or more panels or partitions and the opposing sides of the partitions may have the same pattern. For example, the opposing sides of the panels preferably may have a grid, lattice, network or pattern that is the same on both sides. Thus, the panels may be reversible and interchangeable.


Still another aspect is a partition system that may include one or more panels or partitions and the panels or partitions may have patterns on each side. In particular, the partitions may have patterns on both sides of the partitions and the patterns may contain one or more depressions that extend towards or engage an opposing surface. Preferably, the patterns on both sides of the partitions include one or more depressions and the depressions are generally aligned so that a depression on one side of a panel is aligned with a depression on the other side of the panel. The depressions are preferably integrally formed in the panels and the depressions may be sized and configured to increase the strength of the panels. Desirably, the depressions are positioned on opposing sides of the panels and the depressions are sized and configured to engage or abut proximate the center of the panel. Advantageously, because the depressions are formed on both sides of the panel, the opposing sides of the panel may have generally the same pattern. This allows a panel with the same design on opposing sides of the panel to be created.


Advantageously, the depressions formed on both sides of the panel can be closely spaced, which increases the number of depressions that can be formed in the panels. The increased number of depressions formed in the blow-molded panel at first appears to increase the amount of plastic material required to construct the structure because of the increased surface area and number of depressions. The increased number of depressions with the increased amount of plastic would also appear to increase the time the panels must be cooled during the manufacturing process. In particular, it would appear that the panels would require an increased amount of plastic, which would retain more heat and require a longer cooling time before the panels could be removed from the mold. This would increase the cycle time required to construct the panels because the panels could not be removed as quickly from the mold. The increased number of depressions and closer spacing of the depressions, however, allows the outer wall of the panels to be constructed from thinner plastic. Thus, contrary to conventional blow-molded structures, increasing the number of depressions allows blow-molded panels with thinner walls to be constructed.


Significantly, the increased number of depressions and thinner outer walls allow less plastic to be used to construct the blow-molded panels. The reduced amount of plastic advantageously saves materials and resources. In addition, the costs of the blow-molded panels may be decreased because less plastic is required. In addition, the increased number of depressions and thinner outer walls results in less materials being used to construct the panels, which reduces the weight of the panels. Thus, lightweight blow-molded panels can be constructed.


A still further aspect is a partition system that may include one or more panels or partitions. The panels may be constructed from blow-molded plastic and the panels may have thin outer walls that allow heat to be quickly dissipated during the manufacturing process. Because the thinner outer walls allow heat to be dissipated more quickly, the blow-molded panels may cool more quickly in the mold. This may allow the panels to be removed more quickly from the mold. Additionally, because the increased number of depressions provides more support for the opposing surfaces, the panels may be removed from the mold at a higher temperature. Accordingly, the manufacturing time and/or cycle time required to construct the blow-molded panels may be reduced, which may increase the output and/or efficiency of the blow-molding process.


Yet another aspect is a partition system that may include one or more panels or partitions. The panels may be constructed from blow-molded plastic and the reinforcing ribs and/or beams that are typically formed in blow-molded plastic panels are not required. In fact, reinforcing ribs or beams are desirably not formed in the blow-molded panels because reinforcing ribs require thicker outer walls, which increases the time of the manufacturing process and prevents the panels from having the same design on the opposing sides.


A further aspect is a partition system that may include one or more panels or partitions. The panels may be constructed from blow-molded plastic and the panels may include one or more depressions that are formed in one surface and extend towards an opposing surface. The depressions are preferably uniformly spaced to create a generally consistent and/or standardized arrangement of depressions. A consistent arrangement of the depressions may help create panels with uniform characteristics. For example, a generally constant pattern of depressions may create panels with generally uniform strength and structural integrity. Accordingly, the depressions in the panels may be formed in a generally uniform pattern such as a grid or lattice. Significantly, the same grid or lattice may be formed on both sides of the panels.


Another aspect is a partition system that may include one or more panels or partitions. The panels may be constructed from blow-molded plastic and the blow-molded panels may have a lower profile because reinforcing ribs are not required. Thus, the height or thickness of the blow-molded panels may be decreased. As discussed above, conventional reinforcing ribs may also create uneven surfaces in the opposing surface because the opposing surface may not be supported evenly. In addition, the distance separating the opposing surfaces may vary because of the reinforcing ribs. Advantageously, the closely spaced depressions allow large panels to be created that do not include significant sags, ripples or uneven surfaces.


Still another aspect is a partition system that may include one or more panels or partitions. The panels may be constructed from blow-molded plastic and the panels may include one or more hollow portions. For example, the panels may include a generally hollow core or center portion. The hollow and/or center portions of the panels, however, may be filled with materials such as foam or other materials. The foam may be designed to increase the strength of the panels or may be intended to provide heat and/or sound insulation. The foam or other materials used to fill the interior portion of the panels is preferably lightweight so that the panels are lightweight. The foam or other materials may also have other suitable properties and characteristics.


Yet another aspect is a partition system that may include one or more panels or partitions. One or more of the panels may have an edge or border on at least one of the sides of the panels. The borders may be designed to provide increased protection and/or strength of the panels. The borders may also include a slot, groove or other type of channel. Desirably, at least two sides of the panels include borders and, if desired, all sides of the panels may include borders but borders are not required.


A further aspect is a partition system that may include one or more panels or partitions. The partition system may also include one or more connectors that are sized and configured to connect one or more of the partitions. Advantageously, the connectors may allow the partitions to be connected in a variety of suitable configurations. For example, the connectors may allow the partitions to be joined in a linear or a straight line configuration, or at a right angle or at any other desired angle. Significantly, the connectors may allow for the simple, straight-forward connection of two or more partitions. Desirably, tools are not required to connect the partitions and the partitions are securely connected by the connectors. The connectors are preferably sized and configured to engage the borders to allow the partitions to be interconnected. In particular, the connectors preferably have engaging portions that are sized and configured to be inserted into one or more grooves forming a portion of the borders.


Yet another aspect is a partition system that may include one or more panels or partitions. The partition system may also include one or may feet which may be used to support the partitions in a generally vertical or upright configuration. The feet may also be used to connect two or more partitions. Further, the feet may be used to support the partitions in any desired angle or configuration.


A further aspect is a partition system that may include one or more panels or partitions that may be selectively or permanently connected. Desirably, the partition system has few components and the components are preferably interchangeable. This may allow the components to be arranged into a customized arrangement. Additionally, the components are preferably connected without tools, which may allow the system to be shipped in an unassembled configuration and then the customer can easily assemble the system into the desired arrangement. This may also allow the customer to configure the partition system into any suitable arrangement or design.


Another aspect is a partition system that may include one or more panels or partitions. One or more of the panels may include one or more reinforcing members, which may be used to strengthen and/or increase the rigidity of the panels. In addition, the reinforcing members may provide additional structural integrity for one or more portions of the panel. The panels may also include two or more reinforcing members if desired. While the reinforcing members may be located proximate at least a portion of an edge of a panel, the reinforcing members may be located in any desired portion of the panel.


These and other aspects, features and advantages of the present invention will become more fully apparent from the following detailed description of preferred embodiments and appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The appended drawings contain figures of preferred embodiments to further clarify the above and other aspects, advantages, and features of the present invention. It will be appreciated that these drawings depict only preferred embodiments of the invention and are not intended to limit its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIG. 1A is a front view of an exemplary embodiment of a panel or partition that may be constructed from blow-molded plastic and used in connection with a partition system;



FIG. 1B is a rear view of the panel or partition shown in FIG. 1;



FIG. 2A is a left side view of the panel or partition shown in FIG. 1;



FIG. 2B is a right side view of the panel or partition shown in FIG. 1;



FIG. 3 is a top view of the panel or partition shown in FIG. 1;



FIG. 4 is a bottom view of the panel or partition shown in FIG. 1;



FIG. 5 is a perspective view of an exemplary embodiment of a connector that may be used to connect one or more panels or partitions, such as shown in FIG. 1;



FIG. 6A is a front view of the connector shown in FIG. 5;



FIG. 6B is a rear view of the connector shown in FIG. 5;



FIG. 7 is a bottom view of the connector shown in FIG. 5;



FIG. 8 is a top view of the connector shown in FIG. 5;



FIG. 9A is a left side view of the connector shown in FIG. 5;



FIG. 9B is a right side view of the connector shown in FIG. 5;



FIG. 10 is a perspective view of an exemplary embodiment of a foot that may be used in connection with one or more panels or partitions, such as shown in FIG. 1;



FIG. 11 is a perspective view of a pair of feet as shown in FIG. 10, that may be used in connection with a panel or partition shown in FIG. 1;



FIG. 12 is a front view of the foot shown in FIG. 10;



FIG. 13 is a bottom view of the foot shown in FIG. 10;



FIG. 14 is a top view of the foot shown in FIG. 10;



FIG. 15A is a left side view of the foot shown in FIG. 10;



FIG. 15B is a right side view of the foot shown in FIG. 10;



FIG. 16 is an enlarged perspective view of another exemplary embodiment of a portion of a panel or partition;



FIG. 17 is a top view of the portion of the panel or partition shown in FIG. 16;



FIG. 18 is an enlarged perspective view of yet another exemplary embodiment of a portion of a panel or partition that may be used with a partition system;



FIG. 19 is a top view of the portion of the panel or partition shown in



FIG. 20 is an enlarged perspective view of still another exemplary embodiment of a portion of a panel or partition that may be used with a partition system;



FIG. 21 is a top view of a portion of the panel or partition shown in FIG. 20; and



FIG. 22 is a side view of a further exemplary embodiment of a portion of a panel or partition that may be used with a partition system.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is directed towards a partition system. The principles of the present invention, however, are not limited to a partition system. It will be understood that, in light of the present disclosure, the partition system disclosed herein can be successfully used in connection with other types of systems, devices, structures and the like.


Additionally, to assist in the description of the partition system, words such as top, bottom, front, rear, right and left are used to describe the accompanying figures. It will be appreciated, however, that the partition system can be located in a variety of desired positions—including various angles, sideways and even upside down. A detailed description of the partition system now follows.


As shown FIG. 1A, the partition system may include one or more panels or partitions 2, such as shown in the accompanying figures. As discussed in greater detail below, one or more of the panels 2 may be used to create a variety of structures, such as, walls, dividers, fences, gates, doors, barriers, workstations, cubicles, offices, children's playhouses and/or jungle gyms, picnic tables, furniture, shelves, tool sheds, utility sheds, dog houses, containers, or the like. In fact, one or a plurality of panels may be used for any of a variety of other suitable uses and systems.


The panel 2 may preferably be constructed from a moldable and/or formable material, such as, plastic or the like. In particular, the panel 2 may be constructed from high-density polyethylene, but other suitable types of plastics may also be used. The panel 2 may be constructed by a blow-molding process, but the panel 2 could be constructed by vacuum-molding, injection-molding, extrusion-molding, or any other suitable process. In one embodiment, the panel 2 may be constructed by attaching two sides together; the two sides being formed using vacuum-molding, injection-molding, extrusion-molding, or any other suitable process. In one embodiment, the panel 2 may be constructed by as a unitary, one-piece structure using, for example, blow-molding or another suitable process. Advantageously, a panel constructed from blow-molded plastic is generally light-weight, strong, durable, rust-resistant, and weather-resistant. For example, a structure designed for outdoor use (such as, a utility shed, a fence, a picnic table, a dog house, or the like) may advantageously resist damage commonly resulting from such use. Further, a panel constructed from blow-molded plastic may also be formed into any of a variety of desired shapes, sizes, colors, designs, configurations, and the like. Of course, the panel 2 need not be constructed using plastic or blow-molded plastic. Indeed, the panel 2 may be constructed from any other suitable material having other appropriate characteristics, including, but not limited to, wood, metals, or the like. Further, two or more different panels 2 (such as, panels constructed using different materials and/or having different characteristics) may be used with each other, depending on the intended purpose.


In one embodiment, the panel 2 may be prefabricated. One or more panels 2 may be connected in a wide variety of configurations, arrangements, and layouts. Advantageously, one or more panels 2 and/or other portions of the partition system described herein may be interchangeable to allow various permanent and/or temporary structures to be constructed. Significantly, one or more panels 2 may be part of a modular system that can be formed into a freestanding or independent structure. It will be understood that the panels may also be connected to other structures and supports as desired.


In one embodiment, the panel 2 may have a generally rectangular configuration with a length and a width. In particular, the panel 2 may have a height of about six feet and a width of about two to about three feet, which may be used to construct offices, cubicles, or other suitable structures. Of course, the panel 2 may be larger or smaller depending, for example, upon the intended use of the panel 2. Although the panel 2 may be generally rectangular, the panel 2 may be generally square, circular, polygonal, irregularly-shaped, or may have any other desired shape or design.


The panel 2 may have a pattern one or more sides of the panel 2. For example, FIG. 1A illustrates that the panel 2 may have a pattern shown from a front view. Desirably, the panel 2 also has a pattern on the opposing side of the panel 2. For example, FIG. 1B is a rear view of the panel 2 (FIG. 1A), which illustrates a pattern formed on the opposing side of the panel 2. As shown in FIGS. 1A and 1B, the panel may have the same pattern on both sides of the panel 2. Advantageously, with the same pattern on both sides of the panel 2, a symmetrical panel may be created, which may be reversible and interchangeable. With the same pattern on each side and/or with a symmetrical pattern, a symmetrical panel may have more potential uses. Of course, the panel 2 may only have a pattern on one side. Also, the panel 2 may have different patterns (including but not limited to asymmetrical patterns) on different sides. Further, the sides of the panel 2 do not require any particular pattern and do not require any pattern at all.


In one embodiment, the panel 2 may have one or more sides that include a pattern, such as, a grid; a network; a network of horizontal and vertical lines; a network of perpendicular lines; a lattice; a crisscross pattern; a pattern of regularly spaced horizontal and vertical lines forming squares; a pattern of regularly spaced horizontal and vertical lines forming rectangles; an arrangement of design elements in a regular, periodic pattern; or the like. The opposing sides of the panel 2 may include patterns that are generally aligned, such as, along one or more generally straight lines; along one or more generally horizontal lines; along one or more generally vertical lines; any combination thereof; or in any other suitable alignment. Of course, the sides of the panel 2 do not require patterns that are aligned.


In one embodiment, the panel 2 may have one or more sides that include a pattern formed with one or more depressions or “tack-offs,” which may advantageously be disposed within a pattern. For example, the panel 2 may include one or more depressions, such as depressions 4, 6, 8, 10, 12, 14, and 16 (FIG. 1A) and depressions 18, 20, 22, 24, 26, 28, and 30 (FIG. 1B). The depressions may extend towards an opposing surface of the panel 2. Some or all of the surfaces of the panel 2 may be generally flat or may other suitable configurations. Opposing surfaces of the panel 2 may be generally parallel with respect to each other or may have any other suitable relationship. The depressions may be disposed proximate an opposing surface of the panel 2 and may engage an opposing surface of the panel 2. The depressions need not be disposed proximate an opposing surface or engage an opposing surface of the panel 2. In one embodiment, the pattern formed with one or more depressions may allow the depressions to be closely spaced. The one or more depressions may increase the strength, rigidity, or both strength and rigidity of the panel 2. The depressions may be spaced in other suitable manner and/or relative locations. Further, the panel 2 does not require depressions to be within a pattern and does not require depressions at all.


A side of the panel 2 may include a pattern include any suitable shape, configuration, or design. In one embodiment, as shown in FIG. 1A, the pattern may define one or more shaped portions, such as, shaped portions 32 and 34. The shaped portion 32, the shaped portion 34, or both may include a generally square, generally flat surface defined by lines 36, 38, 40, 42, and 44. The lines 36, 38 may be generally vertically oriented (as viewed from the perspective shown in FIG. 1A) and may be generally straight. The lines 40, 42, and 44 may be generally horizontally oriented (as viewed from the perspective shown in FIG. 1A) and may be generally straight. Thus, some or all of the lines 36 and 38 may be disposed in a generally perpendicular manner with respect to some or all of the lines 40, 42, and 44. Similarly, as shown in FIG. 1B, the shaped portion 46, the shaped portion 48, or both may include a generally square, generally flat surface defined by lines 50, 52, 54, 56, and 58. The lines 50, 52 may be generally vertically oriented (as viewed from the perspective shown in FIG. 1B) and may be generally straight. The lines 54, 56, and 58 may be generally horizontally oriented (as viewed from the perspective shown in FIG. 1B) and may be generally straight. Thus, some or all of the lines 50 and 52 may be disposed in a generally perpendicular manner with respect to some or all of the lines 54, 56, and 58. Of course, a side of the panel 2 does not require any lines (such as, the lines 36, 38, 40, 42, 44, 50, 52, 54, 56, and 58) at all and does not require that any lines be generally horizontal, generally vertical, generally straight, or in any particular orientation with respect to each other. Indeed, one or more lines may form any suitable shape or design, including, but not limited to, a square, a circle, an oval, an ellipse, a polygon, an irregularly-shaped figure, a symmetrically shaped figure, an asymmetrically shaped figure, or any other desired shape, configuration, or design. Accordingly, a shaped portion need not include a generally square shape or a generally flat surface. In fact, a shaped portion may be generally square, circular, oval, elliptical, polygonal, irregularly-shaped, symmetrically shaped, asymmetrically shaped, or any other desired shape, configuration, or design—depending upon, for example, the intended purpose of the shaped portion. Further, a side of the panel 2 does not require a shaped portion.


In one embodiment, a line (such as, the lines 36, 38, 40, 42, 44, 50, 52, 54, 56, and 58) may comprise one or more channels or grooves that may be disposed toward an opposing surface of the panel 2 and that may be spaced apart from the surface of a shaped portion (such as, shaped portions 32, 34, 46, and 48). Preferably, at least a portion of a channel or groove does not engage an opposing surface of the panel 2; however, some or all of a channel or groove may engage an opposing surface of the panel 2, depending upon, for example, the intended purpose of the channel or groove. In one embodiment, a line may comprise one or more lips or ridges that may be disposed away from an opposing surface of the panel 2 and that may be spaced apart from the surface of a shaped portion. Preferably, at least a portion of a lip or ridge does not engage an opposing surface of the panel 2; however, some or all of a lip or ridge may engage an opposing surface of the panel 2, depending upon, for example, the intended purpose of the lip or ridge. Of course, a side of the panel 2 does not require lines (including channels, grooves, lips, and ridges), which are optional.


In one embodiment, a shaped portion may include one or more generally central axes. The shaped portion may have a generally horizontal axis, a generally vertical axis, or both. For example, as illustrated in FIG. 1A, the shaped portion 32 may include a generally vertical axis (as indicated by the dotted line 54) disposed generally toward the center of the width of shaped portion 32 and may include a generally horizontal axis (as indicated by the dotted line 56) disposed generally toward the center of the height of shaped portion 32; and the shaped portion 34 may include a generally vertical axis (as indicated by the dotted line 58) disposed generally toward the center of the width of shaped portion 34 and may include a generally horizontal axis (as indicated by the dotted line 60) disposed generally toward the center of the height of shaped portion 34. Thus, some or all of the lines 36 and 38 may be disposed generally parallel to some or all of the axes 54 and 58 and may be disposed in a generally perpendicular manner with respect to some or all of the axes 56 and 60. Also, some or all of the lines 40, 42, and 44 may be disposed generally parallel to some or all of the axes 56 and 60 and may be disposed in a generally perpendicular manner with respect to some or all of the axes 54 and 58. Also as an example, as illustrated in FIG. 1B, the shaped portion 46 may include a generally vertical axis (as indicated by the dotted line 62) disposed generally toward the center of the width of shaped portion 46 and may include a generally horizontal axis (as indicated by the dotted line 64) disposed generally toward the center of the height of shaped portion 46; and the shaped portion 48 may include a generally vertical axis (as indicated by the dotted line 66) disposed generally toward the center of the width of shaped portion 48 and may include a generally horizontal axis (as indicated by the dotted line 68) disposed generally toward the center of the height of shaped portion 48. Thus, some or all of the lines 50 and 52 may be disposed generally parallel to some or all of the axes 62 and 66 and may be disposed in a generally perpendicular manner with respect to some or all of the axes 64 and 68. Also, some or all of the lines 54, 56, and 58 may be disposed generally parallel to some or all of the axes 64 and 68 and may be disposed in a generally perpendicular manner with respect to some or all of the axes 62 and 66. A shaped portion may have one or more diagonal axes or any other suitable axes. A shaped portion does not require any axis and does not require that any lines be in any particular orientation with respect to any axis.


In one embodiment, a shaped portion may have a shape that is generally symmetrical about one or more axes. A shaped portion may have a shape that is generally symmetrical about one or more central axes. A shaped portion may have a shape that is generally symmetrical about a generally vertical axis, a generally horizontal axis, or both. As shown in FIG. 1A, the shaped portion 32 may have a shape that is generally symmetrical about the axis 54, the axis 56, or both; and the shaped portion 34 may have a shape that is generally symmetrical about the axis 58, the axis 60, or both. As shown in FIG. 1B, the shaped portion 46 may have a shape that is generally symmetrical about the axis 62, the axis 64, or both; and the shaped portion 48 may have a shape that is generally symmetrical about the axis 66, the axis 68, or both. In one embodiment, a shaped portion may be symmetrical about one or more diagonal axes. Of course, a shaped portion need not be symmetrical about any axis.


In one embodiment, a side of the panel 2 may include one or more shaped portions that may generally aligned with one or more other shaped portions on that side of the panel 2. For example, a side of the panel 2 may include one or more shaped portions generally aligned with one or more other shaped portions along one or more axes. For example, as shown in FIGS. 1A and 1B, one or more sides of the panel 2 may include 6 columns and 16 rows of shaped portions. Some or all of the shaped portions in a column may be aligned generally along a generally vertical central axis. Some or all of the shaped portions in a row may be aligned generally along a generally horizontal central axis. A side of the panel 2 may have 1, 2, 3, 4 or any other suitable number of rows of shaped portions. A side of the panel 2 may have 1, 2, 3, 4 or any other suitable number of columns of shaped portions. Of course, a side of the panel 2 need not include columns of shaped portions or rows of shaped portions. Also, shaped portions on a side of a panel 2 may be aligned in any other suitable alignment or manner. Further, a side of the panel 2 does not require any shaped portions to be aligned.


In one embodiment, a side of the panel 2 may include one or more shaped portions on one side of the panel 2 are generally aligned with one or more other shaped portions on an opposing side of the panel 2. A shaped portion on one side of the panel 2 may have one or more axes that are generally aligned with one or more axes of a shaped portion on an opposing side of the panel 2. A shaped portion on one side of the panel 2 may have an axis that is generally aligned with one or more axes of one or more shaped portions on an opposing side of the panel 2. As shown in FIGS. 1A and 1B, the axis 54 of the shaped portion 32 may be generally aligned with the axis 62 of the shaped portion 46; and the axis 56 of the shaped portion 32 may be generally aligned with the axis 64 of the shaped portion 46. Thus, in one embodiment, a side of the panel 2 may include a shaped portion on one side of the panel 2 that may be generally aligned with a shaped portion on an opposing side of the panel 2 along a vertical axis, a horizontal axis, or both. Similarly, the axis 58 of the shaped portion 34 may be generally aligned with the axis 66 of the shaped portion 48; and the axis 60 of the shaped portion 34 may be generally aligned with the axis 68 of the shaped portion 48. Accordingly, in one embodiment, a side of the panel 2 may include a plurality of shaped portions on one side of the panel 2 that may be generally aligned with a corresponding shaped portion on an opposing side of the panel 2. A side of the panel 2 may include a column of one or more shaped portions that may be generally aligned with column of one or more shaped portions formed on an opposing side of the panel 2. A side of the panel 2 may include a row of one or more shaped portions that may be generally aligned with column of one or more shaped portions formed on an opposing side of the panel 2. A shaped portion on a side of a panel 2 may be aligned in any other suitable alignment or manner with a shaped portion formed on an opposing side of the panel 2. The panel 2 does not require that a shaped portion (or any columns or rows of shaped portions) be aligned with any shaped portion (or any columns or rows of shaped portions) formed on an opposing side of the panel 2.


In one embodiment, a side of the panel 2 may include a one or more lines that may be generally aligned with one or more lines on an opposing side of the panel 2. A side of the panel 2 may include a one or more lines that may be generally aligned along one or more axes with one or more lines on an opposing side of the panel 2. For example, as shown in FIGS. 1A and 1B, the line 36 may be generally aligned with the line 52 along a generally vertical axis, the line 38 may be generally aligned with the line 50 along a generally vertical axis, the line 40 may be generally aligned with the line 54 along a generally horizontal axis, the line 42 may be generally aligned with the line 56 along a generally horizontal axis, and the line 44 may be generally aligned with the line 58 along a generally horizontal axis. A line may be aligned with a line formed on an opposing side of the panel 2 in any other suitable alignment, orientation, or manner. The panel 2 does not require that a line on a side of the panel 2 be aligned along any axis with any line formed on an opposing side of the panel 2. Further, the panel 2 does not require that a line on a side of the panel 2 be aligned in any manner with any line formed on an opposing side of the panel 2.


A side of the panel 2 may include a pattern that may intersect at least a portion of one or more depressions. According, all or a portion of a depression (or a plurality of depressions) may be generally disposed within a pattern. In one embodiment, a side of the panel 2 may include one or more depressions that may be generally disposed within (or may otherwise intersect with) a pattern comprising one or more lines. For example, as shown in FIG. 1A, a pattern may include a line (such as, a line 70) within which all or a portion of one or more depressions (such as, depressions 72, 74, 76, 78, 80, 82 and 84) may be disposed. Similarly, as shown in FIG. 1A, the depressions 4, 6, and 12 may be disposed within the line 40; the depressions 8, 10, and 14 may be disposed within the line 42; the depressions 4 and 8 may be disposed within the line 36; and the depressions 6 and 10 may be disposed within the line 38. Likewise, as shown in FIG. 1B, the depressions 18, 20, and 26 may be disposed within the line 54; the depressions 22, 24, and 28 may be disposed within the line 56; the depressions 20 and 24 may be disposed within the line 50; and the depressions 18 and 22 may be disposed within the line 52. A depression may be disposed within one, two, or any other suitable number of lines. A depression may be disposed at the intersection of two, three, or any other suitable number of lines. A depression may be disposed at the intersection of two, three, or any other suitable number of substantially straight lines. A depression may be disposed at the intersection of two, three, or any other suitable number of curvilinear lines. A depression may be disposed at the intersection of two substantially perpendicular lines. A side of the panel 2 may include one or more depressions that may be generally disposed within a pattern comprising one or more generally horizontal lines and one or more generally vertical lines. A plurality of three or more depressions may be disposed in a generally equidistant manner within a line. For example, as shown in FIG. 1A, the depression 74 may be spaced apart from the depression 76 and the depression 72 at about the same distance; the depression 76 may be spaced apart from the depression 74 and the depression 78 at about the same distance; the depression 76 may be spaced apart from the depression 74 and the depression 78 at about the same distance; the depression 78 may be spaced apart from the depression 76 and the depression 80 at about the same distance; the depression 80 may be spaced apart from the depression 78 and the depression 82 at about the same distance; and the depression 82 may be spaced apart from the depression 80 and the depression 84 at about the same distance. A plurality of three or more depressions may be disposed in a generally equidistant manner within a curved line, a substantially straight line, or a line having any other suitable configuration. A plurality of three or more depressions may be disposed in a generally equidistant manner within a substantially vertical line or a substantially horizontal line. The panel 2 does not require a depression to be disposed in any particular location with respect to any other depression. A side of the panel 2 may include one or more depressions that may be generally disposed proximate one or more lines in any suitable design. A side of the panel 2 may include one or more depressions that may be spaced apart from one or more lines in any suitable design. Of course, a pattern does not require straight lines, vertical lines, horizontal lines, or any lines at all. Further, the panel 2 does not require a depression to be disposed within any line, at the intersection of any lines, or in any particular location with respect to any line.


In one embodiment, a side of the panel 2 may include a depression on one side of the panel 2 that may be generally aligned with a depression on an opposing side of the panel 2. As shown in FIGS. 1A and 1B, depressions 4 and 18 may be aligned, depressions 6 and 20 may be aligned, depressions 8 and 22 may be aligned, depressions 10 and 24 may be aligned, depressions 12 and 26 may be aligned, depressions 14 and 28 may be aligned, and depressions 16 and 30 may be aligned. Opposing depressions may be disposed within patterns on the opposing surfaces, but opposing depressions do not have to be disposed within a pattern. Opposing depressions may extend towards each other and may also contact each other. Opposing depressions may be integrally formed in the panel 2. Opposing depressions may be sized and configured to increase the strength of the panel 2. Desirably, opposing depressions may be sized and configured to engage or abut proximate the center of the panel 2. For example, the depressions 4 and 18 may be sized and configured to engage or abut proximate the center of the panel 2. Accordingly, the opposing surfaces of the panel 2 may be interconnected at any suitable locations. Of course, a depression on one side of the panel 2 need not be aligned with, extend toward, or contact a depression on an opposing side of the panel 2.


Advantageously, because the depressions may be formed on opposing sides of a panel and because the depressions may intersect one or more patterns; panels with pleasing aesthetics may be constructed. In addition, because the depressions may be formed on opposing sides of a panel and because the depressions may intersect one or more patterns; generally symmetrical panels may be constructed, helping the panels to be easily interchanged and reversed.


The patterns and/or depressions on both sides of the panels may help panels of various designs and configurations to be constructed. The panels may also be constructed without visual defects and imperfections. Additionally, the patterns and/or depressions may be used to hide or conceal visual defects, imperfections, or other features in the panels.


The patterns and/or depressions may be used to create panels with generally consistent strength and structural integrity to be constructed. For example, because both sides of a panel may be generally the same, the opposing sides may have similar physical properties and characteristics. However, it will be understood that the sides of the panels do not have to be the same and the panels may have a variety of suitable properties and characteristics.


Significantly, if the opposing sides of the panels have a generally similar pattern and/or configuration, the panels may cool more evenly than panels with different patterns and configurations. This may allow the panels to be removed from the mold faster, which may reduce cycle time. This may also reduce the time required to manufacture the panels, which may allow the cost of the panels to be decreased.


The panels may be constructed with a generally hollow interior portion. This interior portion may be hollow or all or a portion of the interior portion may be filled with a material such as foam. The foam, or other suitable material, may create a core or center portion of the panel. The type of foam or filler material may depend upon the intended use of the panels. For example, the foam or filler may be used to insulate the panel. In particular, the foam or filler may be used to provide sound and/or heat insulation. The foam or filler is preferably lightweight, but the characteristics of the foam or filler may depend upon the intended use of the panel.



FIG. 2A is a left side view of the panel 2 (FIGS. 1A and 1B), FIG. 2B is a right side view of the panel 2, FIG. 3 is a top view of the panel 2, and FIG. 4 is a bottom view of the panel 2. As shown in FIGS. 1A, 1B, 2A, 2B, 3, and 4, the panel 2 preferably includes a border or edge disposed about the perimeter of the panel 2. A border may extend along all or a portion of a side of the panel 2. One or more sides of the panel 2 may include a border. The border may provide protection for the panel. The border is preferably rounded or curved, but may have any other shape and/or other characteristics.


In one embodiment, a groove or slot may be disposed proximate a side or edge of the panel 2. A groove may extend along all or a portion of a side of the panel. A groove may be curved, substantially straight, or have any other suitable configuration. Some or all of the sides of the panel may each be disposed proximate at least one groove. As shown in FIGS. 1A, 1B, 2A, 2B, 3, and 4, a groove 86 may be disposed proximate a side 88 of the panel 2, a groove 90 may be disposed proximate a side 92 of the panel 2, a groove 94 may be disposed proximate the side 88, and a groove 96 may be disposed proximate the side 92. Also, as shown in FIGS. 1A, 1B, 2A, 2B, and 3, a groove 98 may be disposed proximate a top surface 100 of the panel 2, and a groove 102 may be disposed proximate the top surface 100. Thus, a groove may be disposed along some or all sides of the panel 2 and/or along a top surface of the panel 2, but it will be understood that any other desired portions of the panel 2 may include a groove. Further, grooves are optional, and, thus, the panel 2 does not require any groove.



FIG. 5 is a perspective view of a connector 104 that may advantageously be used to connect a plurality of panels, such as, the panel 2 (FIGS. 1A-4) according to an embodiment of the invention. FIG. 6A is a front view of the connector 104. FIG. 6B is a rear view of the connector 104. FIG. 7 is a bottom view of the connector 104. FIG. 8 is a top view of the connector 104. FIG. 9A is a left side view of the connector 104. FIG. 9B is a right side view of the connector 104. It will be appreciated that the connector 104 is optional and any other suitable connector, fastener, adhesive, or the like may be used to connect or interlock a plurality of panels 2.


As shown in FIGS. 5-9B, the connector 104 may be used to interconnect a plurality of panels 2. The connector 104 preferably has sufficient structural integrity to securely interconnect a plurality of panels. The connector 104 is preferably a universal type connector that may interconnect panels of various sizes and configurations.


In one embodiment, the connector 104 may include 1, 2, 3, 4, 5, 6, or any other suitable number of slots or grooves that may be advantageously sized and configured to mate and/or align with one or more slots or grooves formed in a panel. As shown in FIGS. 5-9B, the connector 104 may include slots 106, 108, 110, 112, 114, and 116. The connector 104 may include one or more flanges. In one embodiment, the connector 104 may include a plurality of flanges or extensions that may form one or more slots. For example, flanges 118 and 120 may form the slot 106, flanges 122 and 124 may form the slot 108, flanges 126 and 128 may form the slot 114, flanges 130 and 132 may form the slot 116, the flanges 118 and 132 may form the slot 110, and the flanges 124 and 126 may form the slot 112.


The connector 104 may include one or more portions sized and configured to receive an outer portion of the panel 2. The connector 104 may include one or more portions sized and configured to receive a portion of a border or edge of the panel 2. For example, flanges 118, 120, 130, and 132 (FIGS. 5-9B) may form a generally square-shaped receiving portion adapted to receive some or all of generally square-shaped portions 134, 136, 138, and 140 (FIGS. 3 and 4). Similarly, flanges 122, 124, 126, and 128 (FIGS. 5-9B) may form a generally square-shaped receiving portion adapted to receive some or all of generally square-shaped portions 134, 136, 138, and 140 (FIGS. 3 and 4). Thus, the connector 104 may advantageously include a first portion sized and configured to receive an outer portion of a first panel and a second portion sized and configured to receive an outer portion of a second panel. Also, the connector 104 may advantageously include one, two, or more receiving portions each adapted to be disposed at (or contact or otherwise engage) one surface, two surfaces, three surfaces, four surfaces or any other suitable number of surfaces of a panel. Accordingly, the connector 104 may advantageously include a first portion sized and configured to receive a top portion (such as, the portions 134 and 136) of a first panel and a second portion sized and configured to receive a top portion (such as, the portions 134, 136) of a second panel. Further, the connector 104 may advantageously include a first portion sized and configured to receive a bottom portion (such as, the portions 138 and 140) of a first panel and a second portion sized and configured to receive a bottom portion (such as, the portions 138 and 140) of a second panel. Of course, the connector 104 and the panel 2 may include any other suitable portions having other suitable shapes and/or configurations that may be used to interconnect a plurality of panels 2.


The connector 104 may include one or more flanges or extensions that may advantageously be sized and configured to be inserted into (or otherwise mate with or engage) one or more grooves or slots formed in the panel 2. For example, in one embodiment, a pair of flanges (such as, the flanges 118 and 120, the flanges 122 and 124, the flanges 126 and 128, the flanges 130 and 132, the flanges 118 and 132, the flanges 124 and 126, or the like) may be aligned with and inserted into (or otherwise mate with or engage) a pair of grooves or slots formed in the panel 2 (such as, the grooves 86 and 94, the grooves 90 and 96, or the like).


The connector 104 may include one or more support structures that may advantageously be sized and configured to structurally support the connector 104. For example, in one embodiment, one or more braces (such as, braces 142 and 144) may be connected to one or more interior walls of the connector 104. One or more such braces may be formed integrally with the connector 104. As illustrated, one or more braces may be aligned in a horizontal alignment, a vertical alignment, or both. Further, one or more braces may be aligned in a perpendicular alignment with respect to one or more other braces. Of course, any number of braces may be aligned, formed, and configured in any other suitable manner. Further, such braces are optional and not required by the connector 104.


The connector 104 may be connected to one or more panels 2 by an interference fit, a friction fit, a snap fit, a fastener, an adhesive, any other suitable means for connecting the connector 104 to one or more panels 2, or any suitable combination thereof.


One or more connectors 104 may be used to interconnect or interlock one or more panels 2. Desirably, the connectors may be interchangeable and may be sized and configured to allow a plurality of panels 2 to be connected in a variety of different configurations. For example, one or more connectors 104 may be configured to connect a plurality of panels in a line, planar arrangement, curved, rounded or other suitable configuration. One or more connectors 104 may also be configured to connect a plurality of panels 2 at a right angle or any other desired angle. One or more connectors 104 may also be configured to connect a plurality of panels 2 in an offset, parallel arrangement. One or more connectors 104 may also be configured to interconnect three, four, or even more panels at one time.


One or more connectors 104 desirably provide a relatively straightforward and simple method for connecting a plurality of panels 2. The connector 104 may be constructed from plastic including injection-molded plastic, extrusion-molded plastic, or the like. It will be appreciated, however, that the connector 104 may be constructed from any desired method and with any suitable materials, such as metal, depending, for example, upon the intended use of the connector 104. Advantageously, the connector 104 allows a plurality of panels 2 to be interconnected without a frame, but a frame could be used if desired.


The connector 104 may be used to interconnect a plurality of panels 2 without tools, but tools could be used if desired. Advantageously, using one or more connectors 104, a plurality of panels 2 may be easily interconnected and disconnected. This also allows various types and configurations of structures to be created. In addition, because tools are not required, consumers can easily connect and disconnect a plurality of panels 2. This allows such panels to be packaged and shipped in an unassembled or unconnected manner, which may reduce shipping and/or manufacturing costs. It will be appreciated that other types of connectors may be used in addition to, in connection with, or in lieu of one or more connectors 104. For example, rivets, screws, bolts, adhesives, and the like may be used to connect a plurality of panels 2.



FIG. 10 is a perspective view of a foot 146, one or more of which may be used to arrange the panel 2 (FIG. 1) in a desired configuration, orientation, and/or position, according to an embodiment of the invention. FIG. 11 is a perspective view of a partition system 148 in which a one or more feet 146 (FIG. 10) may be used to position the panel 2 (FIG. 1) in a generally upright or generally vertical orientation. Of course, one or more feet 146 could be used to position the panel 2 in an angled orientation having any other suitable angle. One or more feet 146 may also be used to interconnect or interlock one or more panels 2. It will be appreciated that the panel 2 may be arranged in any desired configuration, orientation, and/or position with one or more feet 146 in combination with any number of other suitable components. Further, the panel 2 may be arranged in any desired configuration, orientation, and/or position without any feet 146, which are optional.



FIG. 12 is a front view of the foot 146. FIG. 13 is a bottom view of the foot 146. FIG. 14 is a top view of the foot 146. FIG. 15A is a left side view of the foot 146. FIG. 15B is a right side view of the foot 146.


As shown in FIGS. 11-15, one or more feet 146 may be connected to the panel 2. The panel 2 may be connected to one or more feet 146 using a friction fit, a snap fit, and interference fit, or in any other suitable manner. In one embodiment, the foot 146 may be connected to the panel 2 by inserting at least a portion of the foot 146 into an opening, groove, or channel formed in the panel 2. The foot 146 may include a plurality of flanges (such as, flanges 150 and 152). The flanges 150 and 152 may advantageously be sized and configured to be inserted into an opening formed in the panel 2 (such as, openings 154 and 156 in FIG. 4, or the like). Advantageously, when inserted into an opening formed in the panel 2, the flanges 150 and 152 may be securely attached to the panel 2 using a friction fit, a snap fit, and interference fit, a fastener, an adhesive, or any suitable combination thereof. In one embodiment, the foot 146 may be connected to the panel 2 by inserting at least a portion of the panel 2 (such as, the portions 138 and 140) into an opening, groove, or channel formed in the foot 146, such as, for example, an opening 158. In one embodiment, the foot 146 includes a bracket member 160, which may form the opening 158. Advantageously, when inserted into an opening formed in the foot 146, the inserted portion of the panel 2 may be securely attached to the foot 146 using a friction fit, a snap fit, and interference fit, a fastener, an adhesive, or any suitable combination thereof. The bracket member 160 may be attached to one or more flanges (such as the flanges 150 and 152) in any suitable manner. The bracket member 160 may be formed integrally with one or more flanges. Of course, one or more feet 146 may be connected to the panel 2 in any other suitable manner using any number of suitable connectors, fits, fasteners, adhesives, and the like.


As shown in FIGS. 16, 17, 18, 19, 20, 21, and 22, a panel (such as, the panel 2) may include one, two, or more reinforcement members. FIG. 16 is a perspective view of a portion of an embodiment of a panel 162, which may include a reinforcement member 164. FIG. 17 is an enlarged top view of a portion of the panel 162 (FIG. 16) and the reinforcement member 164 (FIG. 16). FIG. 18 is a perspective view of a portion of an embodiment of the panel 162, which may include a reinforcement member 166. FIG. 19 is an enlarged top view of a portion of the panel 162 (FIG. 18) and the reinforcement member 166 (FIG. 18). FIG. 20 is a perspective view of a portion of an embodiment of the panel 162, which may include a reinforcement member 168. FIG. 21 is an enlarged top view of a portion of the panel 162 (FIG. 20) and the reinforcement member 168 (FIG. 20). FIG. 22 is a side view of a portion of an embodiment of the panel 2, which may include the reinforcement member 164 (FIG. 16). As shown in FIGS. 16-22, one, two, or more edges of a panel (such as, the panel 2) may include a reinforcement member. In one embodiment, a reinforcement member may be disposed proximate at least a portion of an edge of the panel, and the reinforcement member may be sized and configured to reinforce all or a portion of the edge of the panel. A reinforcement member may be disposed along more than one edge and may extend along all or a portion of those edges. It will be appreciated that all or a portion of a reinforcement member may also be disposed away from an edge of a panel. A reinforcement member may be added to a panel after the panel has been formed, may be formed integrally with the panel, or may be constructed as part of the panel in any other suitable manner. The reinforcement member may be constructed from plastic, metal, wood, or any other suitable material having appropriate characteristics. A reinforcement member may advantageously be constructed of a lightweight, strong, and rigid material that may provide portions of a panel with a more durable construction that may resist damage. Of course, a reinforcement member may have any of those and/or any other appropriate characteristics, depending upon, for example, on the intended use or purpose of the reinforcement member. It will be appreciated that a panel does not require any reinforcement members, which are optional.


As shown in FIGS. 16 and 17, the reinforcement member 164 may have generally V-shaped or angled configuration. The reinforcement member 164 may form an angle of about 40 degrees, about 50 degrees, about 90 degrees, less than 90 degrees, greater than 90 degrees, or any other desired angle and may have other suitable shapes and sizes. The reinforcement member 164 may include a rounded angle, but could include a sharp angle. The reinforcement member 164 may be disposed within (or proximate to) a border or edge of the panel 162 and may contact or engage one, two, three, or more walls of the border or edge of the panel 162. The reinforcement member 164 need not be disposed within, disposed proximate to, contact, or engage any portion of a border or edge of the panel 162.


As shown in FIGS. 18 and 19, a reinforcement member 166 may have a generally planar configuration and may be disposed at an angle with respect to the panel 162. It will be appreciated that the reinforcement member could be disposed at any desired angle and may have other suitable shapes and sizes. The reinforcement member 166 may be disposed within (or proximate to) a border or edge of the panel 162 and may contact or engage one, two, three, four, or more walls of the border or edge of the panel 162. The reinforcement member 166 need not be disposed within, disposed proximate to, contact, or engage any portion of a border or edge of the panel 162.


As shown in FIGS. 20 and 21, a reinforcement member 168 may be a tube with a generally circular configuration. The reinforcement member 168 may be a rod. The reinforcement member 168 may have a generally square shape or cross section, a generally rectangular shape or cross section, a generally elliptical or oval shape or cross section, a generally polygonal shape or cross section, an irregular shape or cross section, or any other appropriate shape or cross section. The reinforcement member 168 may be generally hollow, may be generally solid, or may have any other suitable construction. The reinforcement member 168 may be disposed within (or proximate to) a border or edge of the panel 162 and may contact or engage one, two, three, four, or more walls of the border or edge of the panel 162. The reinforcement member 168 need not be disposed within, disposed proximate to, contact, or engage any portion of a border or edge of the panel 162.


A reinforcement member—such the reinforcement member 164 (FIG. 16), the reinforcement member 166 (FIG. 18), the reinforcement member 168 (FIG. 20), or the like—may extend outwardly from the panel, may be disposed within the panel, or both. A reinforcement member may extend outwardly from a top surface of a panel (such as, portions 134 and 136 in FIG. 3), a bottom surface of a panel (such as, portions 138 and 140 in FIG. 4), any other surface of a panel, or any suitable combination thereof. As shown in FIG. 22, the panel 2 (FIG. 1) may include a reinforcement member 164 (FIG. 16) that may extend outwardly from the panel 2.


One skilled in the art will appreciate that a reinforcement member—such the reinforcement member 164 (FIG. 16), the reinforcement member 166 (FIG. 18), the reinforcement member 168 (FIG. 20), or the like—may have other suitable shapes, sizes, and arrangements, and a panel could have more than one reinforcement member.


Advantageously, some or all of the panels, connectors, and feet described herein may form a partition system that is easy to assemble, disassemble, ship, transport, and construct into a variety of suitable configurations and arrangements. Additionally, because the components may be interchangeable, that increases the potential uses of the system. Further, because both sides of the panels may be the same and one or more depressions may be formed in both sides of the panels, the symmetrical panels may be reversible and interchangeable. Finally, the panels provide improved aesthetics and the panels may be formed without visual defects or imperfections.


Although this invention has been described in terms of certain preferred embodiments, other embodiments apparent to those of ordinary skill in the art are also within the scope of this invention.

Claims
  • 1. An apparatus comprising: a blow-molded plastic portion comprising: a first outer wall;a second outer wall; anda hollow interior at least partially disposed between the first outer wall and the second outer wall, the first outer wall, the second outer wall and the hollow interior being integrally formed as part of a unitary, one-piece construction during a blow-molding process; anda metal reinforcing member at least substantially disposed within the hollow interior of the blow-molded plastic portion, the metal reinforcing member having different characteristics than the blow-molded plastic, the metal reinforcing member being sized and configured to increase the strength of the apparatus, the metal reinforcing member comprising: a first portion that contacts an inner portion of the first outer wall; anda second portion that contacts an inner portion of the second outer wall.
  • 2. The apparatus as in claim 1, wherein the metal reinforcing member is disposed proximate an edge of the blow-molded plastic portion.
  • 3. The apparatus as in claim 1, wherein the metal reinforcing member is a thin strip of metal that extends from a first end of the blow-molded plastic portion to a second end of the blow-molded plastic portion.
  • 4. The apparatus as in claim 1, wherein the metal reinforcing member is a thin strip of metal and a first edge of the thin strip of metal engages the inner portion of the first outer wall and a second edge of the thin strip of metal engages the inner portion of the second outer wall.
  • 5. The apparatus as in claim 1, wherein the blow-molded plastic portion has a generally rectangular shape with a height, a length and a thickness; wherein the first outer wall and the second outer wall are separated by a generally constant distance; andwherein the metal reinforcing member is a thin strip of metal that extends at least a majority of the length of the blow-molded plastic portion.
  • 6. The apparatus as in claim 1, wherein the blow-molded plastic portion has a generally rectangular shape with a height, a length and a thickness; wherein the first outer wall and the second outer wall are separated by a generally constant distance; andwherein the metal reinforcing member is a thin strip of metal that extends at least substantially the entire length of the blow-molded plastic portion.
  • 7. The apparatus as in claim 1, wherein the metal reinforcing member has a generally V-shaped configuration, the generally V-shaped metal reinforcing member including a first edge that contacts the inner portion of the first outer wall and a second edge that contacts the inner portion of the second outer wall.
  • 8. The apparatus as in claim 1, wherein the metal reinforcing member has a generally planar configuration, the generally planar metal reinforcing member including a first edge that contacts the inner portion of the first outer wall and a second edge that contacts the inner portion of the second outer wall.
  • 9. The apparatus as in claim 1, wherein the metal reinforcing member has a generally circular configuration, the generally circular metal reinforcing member including a first side that contacts the inner portion of the first outer wall and a second side that contacts the inner portion of the second outer wall.
  • 10. The apparatus as in claim 1, wherein the metal reinforcing member is completely enclosed within the blow-molded plastic portion.
  • 11. The apparatus as in claim 1, wherein a portion of the metal reinforcing member extends beyond an outer edge of the blow-molded plastic portion.
  • 12. The apparatus as in claim 1, wherein the first outer wall includes a pattern; and wherein at least a portion of the pattern contacts the second outer wall.
  • 13. The apparatus as in claim 1, wherein the first outer wall includes a plurality of grooves; and wherein at least a portion of the plurality of grooves contacts the second outer wall.
  • 14. The apparatus as in claim 1, wherein the first outer wall includes a plurality of depressions; and wherein at least a portion of the plurality of depressions contacts the second outer wall.
  • 15. A wall for a structure, the wall comprising: a blow-molded plastic portion comprising: a first outer wall;a second outer wall; anda hollow interior portion at least partially disposed between the first outer wall and the second outer wall, the first outer wall, the second outer wall and the hollow interior portion being integrally formed as part of a unitary, one-piece construction during the blow-molding process; anda metal reinforcing member at least substantially disposed within the hollow interior portion of the blow-molded plastic portion, the metal reinforcing member having different characteristics than the blow-molded plastic, the metal reinforcing member being sized and configured to increase the strength of the blow-molded plastic portion, the metal reinforcing member including a first portion that contacts an inner portion of the first outer wall and a second portion that contacts an inner portion of the second outer wall.
  • 16. The wall as in claim 15, wherein the metal reinforcing member is disposed proximate an edge of the blow-molded plastic portion.
  • 17. The wall as in claim 15, wherein the metal reinforcing member is a thin strip of metal that extends from a first end of the blow-molded plastic portion to a second end of the blow-molded plastic portion.
  • 18. The wall as in claim 15, wherein the metal reinforcing member is a thin strip of metal and a first edge of the thin strip of metal engages the inner portion of the first outer wall and a second edge of the thin strip of metal engages the inner portion of the second outer wall.
  • 19. The wall as in claim 15, wherein the blow-molded plastic portion has a generally rectangular shape with a height, a length and a thickness; wherein the first outer wall and the second outer wall are separated by a generally constant distance; andwherein the metal reinforcing member is a thin strip of metal that extends at least a majority of the length of the blow-molded plastic portion.
  • 20. The wall as in claim 15, wherein the blow-molded plastic portion has a generally rectangular shape with a height, a length and a thickness; wherein the first outer wall and the second outer wall are separated by a generally constant distance; andwherein the metal reinforcing member is a thin strip of metal that extends at least substantially the entire length of the blow-molded plastic portion.
  • 21. The wall as in claim 15, further comprising a second metal reinforcing member at least substantially disposed within the hollow interior portion of the blow-molded plastic portion.
  • 22. The wall as in claim 15, wherein the metal reinforcing member is a thin strip of metal that is disposed at an angle relative to the first outer wall and the second outer wall of the blow-molded plastic portion.
  • 23. The wall as in claim 15, wherein the metal reinforcing member is disposed within the blow-molded plastic portion as part of the unitary, one-piece construction during the blow-molding process.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 11/742,469, entitled REINFORCED BLOW-MOLDED PLASTIC PANELS AND STRUCTURES, which was filed on Apr. 30, 2007, now U.S. Pat. No. 7,654,060; which is a continuation of U.S. patent application Ser. No. 10/890,601, entitled PARTITION SYSTEM, which was filed on Jul. 14, 2004, now U.S. Pat. No. 7,210,277. U.S. patent application Ser. No. 10/890,601 claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 60/487,748, entitled PARTITION SYSTEM, which was filed on Jul. 15, 2003, and this application is a continuation-in-part of U.S. Design patent application 29/180,861, entitled PARTITION CONSTRUCTED FROM BLOW-MOLDED PLASTIC, which was filed on Apr. 30, 2003, now U.S. Pat. No. D500,604; a continuation-in-part of U.S. Design patent application 29/180,870, entitled CLIP FOR CONNECTING ONE OR MORE PARTITIONS, which was filed on Apr. 30, 2003, now abandoned; and a continuation-in-part of U.S. Design patent application 29/186,355, entitled SUPPORT FOR A PARTITION, which was filed on Jul. 14, 2003, now abandoned. Each of these patents and applications are incorporated by reference in their entireties.

US Referenced Citations (380)
Number Name Date Kind
383353 Baker May 1887 A
1300439 Madison Apr 1919 A
1516096 Hahn Nov 1924 A
1519805 Stone Dec 1924 A
1736548 Pye Nov 1929 A
1828193 Levin Oct 1931 A
1912502 Stotzer et al. Jun 1933 A
2107418 Keller Feb 1938 A
2304145 Borchers Dec 1942 A
D139766 Bruner Dec 1944 S
D142945 Borchers Nov 1945 S
2388297 Slaughter Nov 1945 A
2670986 Presnell Mar 1954 A
2766855 Johnson et al. Oct 1956 A
2816329 Sogaro Dec 1957 A
2863185 Riedi Dec 1958 A
2922344 Meissner Jan 1960 A
3077426 Johnston Feb 1963 A
3090087 Miller May 1963 A
3173383 Eggert Mar 1965 A
3194596 Jakeway Jul 1965 A
3199258 Jentoft et al. Aug 1965 A
3200547 Johnson Aug 1965 A
D202177 Blau et al. Sep 1965 S
3220151 Goldman Nov 1965 A
3222829 Bening Dec 1965 A
3234700 Creveling Feb 1966 A
D204088 Adler Mar 1966 S
3242245 Greig et al. Mar 1966 A
3325017 Frank Jun 1967 A
3343321 Axelsson Sep 1967 A
3344564 Slegal Oct 1967 A
3401494 Anderson Sep 1968 A
3423891 Burris Jan 1969 A
3436881 Schlecht Apr 1969 A
3438312 Becker et al. Apr 1969 A
3444034 Hewett May 1969 A
3462330 Greig et al. Aug 1969 A
3488905 Campbell Jan 1970 A
3521414 Malissa Jul 1970 A
3525663 Hale Aug 1970 A
3543456 Gregoire Dec 1970 A
3563582 Shroyer Feb 1971 A
3566554 Schaffer et al. Mar 1971 A
3570797 Stark et al. Mar 1971 A
3592288 Walter Jul 1971 A
3597858 Ogsbury Aug 1971 A
3625462 Jordan Dec 1971 A
3700213 Blease Oct 1972 A
3714749 Aitken Feb 1973 A
3718306 Murray Feb 1973 A
3762109 Cohen Oct 1973 A
3766699 Dinkel Oct 1973 A
3778949 Hellerich Dec 1973 A
3789094 Hutchison Jan 1974 A
3839837 Jaconelli Oct 1974 A
3865679 Hale Feb 1975 A
3905167 Watkins et al. Sep 1975 A
3908326 Francis Sep 1975 A
3921539 Berger Nov 1975 A
3928691 Knudson Dec 1975 A
3933311 Lemelson Jan 1976 A
3935357 Padovani Jan 1976 A
3969862 Kuss Jul 1976 A
3984961 Chieger et al. Oct 1976 A
3992839 La Borde Nov 1976 A
4004387 Ellingson Jan 1977 A
4008548 Leclerc Feb 1977 A
4010586 Brechbuhler Mar 1977 A
4023317 Bettger et al. May 1977 A
4028750 Gustafsson Jun 1977 A
4031682 Renkert Jun 1977 A
4032680 Allard Jun 1977 A
4045937 Stucky Sep 1977 A
D246082 Friedrich Oct 1977 S
4054987 Forlenza Oct 1977 A
4110951 Padrun Sep 1978 A
4127196 Boucher Nov 1978 A
4128369 Kemerer et al. Dec 1978 A
4133149 Angrew Jan 1979 A
4175883 Lemelson Nov 1979 A
4186723 Coppola et al. Feb 1980 A
4200254 Nelson Apr 1980 A
4201019 Jones May 1980 A
4226064 Kraayenhof Oct 1980 A
4236361 Boden Dec 1980 A
4258519 Hugens Mar 1981 A
4290248 Kemerer et al. Sep 1981 A
4313385 Fitzgerald Feb 1982 A
4348442 Figge Sep 1982 A
4436779 Menconi et al. Mar 1984 A
4470405 Landstrom et al. Sep 1984 A
D278395 Keeler Apr 1985 S
4557091 Auer Dec 1985 A
4563374 Treber et al. Jan 1986 A
4568584 Holland Feb 1986 A
4609192 Bratcher Sep 1986 A
4641468 Slater Feb 1987 A
4662515 Newby, Sr. May 1987 A
4674250 Altizer Jun 1987 A
D293981 Ball Feb 1988 S
4790112 Wang Dec 1988 A
4792082 Williamson Dec 1988 A
4805357 Aleixo Feb 1989 A
4826265 Hockenberry May 1989 A
4843788 Gavin et al. Jul 1989 A
4862653 Pomento Sep 1989 A
4903445 Mankowski Feb 1990 A
4910280 Robbins, III Mar 1990 A
4925338 Kapusta May 1990 A
4930286 Kotler Jun 1990 A
4972634 Dresden Nov 1990 A
4984406 Friesen Jan 1991 A
4998023 Kitts Mar 1991 A
5036634 Lessard et al. Aug 1991 A
5040834 Kahl et al. Aug 1991 A
5106915 Rock et al. Apr 1992 A
5125697 Kahl et al. Jun 1992 A
5184436 Sadler Feb 1993 A
5191985 Licari Mar 1993 A
5219085 Craft et al. Jun 1993 A
5255803 Pavone et al. Oct 1993 A
5265385 Smith et al. Nov 1993 A
5279233 Cox Jan 1994 A
5293720 Brice et al. Mar 1994 A
5293725 Matticks et al. Mar 1994 A
5331778 Mazpule et al. Jul 1994 A
5335614 Klaus Aug 1994 A
5358423 Burkhard et al. Oct 1994 A
5364204 MacLeod Nov 1994 A
5390467 Shuert Feb 1995 A
5405670 Wetzel et al. Apr 1995 A
5411782 Jarvis et al. May 1995 A
5437573 Rodriguezferre Aug 1995 A
5459967 Bodtker Oct 1995 A
D364468 Maple Nov 1995 S
5470641 Shuert Nov 1995 A
D365154 Maple Dec 1995 S
5507484 van Nimwegen et al. Apr 1996 A
5528997 Miller Jun 1996 A
5544870 Kelley et al. Aug 1996 A
5555681 Cawthon Sep 1996 A
D375168 Hunt et al. Oct 1996 S
D375169 Hunt et al. Oct 1996 S
5566961 Snell et al. Oct 1996 A
5568772 Carson Oct 1996 A
D376622 Roberts Dec 1996 S
5596843 Watson Jan 1997 A
5605344 Insalaco et al. Feb 1997 A
5609327 Amidon Mar 1997 A
5626331 Erwin May 1997 A
5640816 Reiland et al. Jun 1997 A
5647181 Hunts Jul 1997 A
5657583 Tennant Aug 1997 A
5660907 Skalka Aug 1997 A
5671913 Vesper Sep 1997 A
D387876 Maple Dec 1997 S
5694730 Del Rincon et al. Dec 1997 A
5704699 Pagelow et al. Jan 1998 A
5706620 De Zen Jan 1998 A
5713806 Teitgen et al. Feb 1998 A
5715854 Andrieux et al. Feb 1998 A
5724774 Rooney Mar 1998 A
D393724 Sagol Apr 1998 S
5743426 Mosley Apr 1998 A
5755341 Spamer May 1998 A
5761867 Carling Jun 1998 A
5776582 Needham Jul 1998 A
5778604 Snow Jul 1998 A
5787654 Drost Aug 1998 A
5789057 Naitou et al. Aug 1998 A
5791262 Knight et al. Aug 1998 A
D397562 DePottey et al. Sep 1998 S
5807618 Shiota et al. Sep 1998 A
D399575 Hunt Oct 1998 S
5826389 Siler Oct 1998 A
D400737 DePottey et al. Nov 1998 S
5845588 Gronnevik Dec 1998 A
D405540 Maple Feb 1999 S
5868080 Wyler et al. Feb 1999 A
5868630 Saksun, Jr. Feb 1999 A
5882140 Yodock, Jr. et al. Mar 1999 A
5890338 Rodriguez-Ferre Apr 1999 A
5890607 Maglione Apr 1999 A
5904021 Fisher May 1999 A
D411625 Fuller et al. Jun 1999 S
D411629 Mandell Jun 1999 S
5911932 Dyksterhouse Jun 1999 A
5915724 Daris et al. Jun 1999 A
5935510 Hansen Aug 1999 A
5944377 Vlahovic Aug 1999 A
5950378 Council et al. Sep 1999 A
5950568 Axelrod et al. Sep 1999 A
5961100 Lechtenboehmer Oct 1999 A
5970663 McDonough Oct 1999 A
D416091 Ohanesian Nov 1999 S
5975660 Tisbo et al. Nov 1999 A
5992106 Carling et al. Nov 1999 A
5993724 Shuert Nov 1999 A
6012253 Burns Jan 2000 A
6018927 Major Feb 2000 A
6044598 Elsasser et al. Apr 2000 A
6060144 Kimura et al. May 2000 A
6061979 Johannes May 2000 A
6061987 King May 2000 A
6068308 Molzer May 2000 A
6098354 Skandis Aug 2000 A
6101768 Springstead et al. Aug 2000 A
6101967 Glass et al. Aug 2000 A
6109687 Nye et al. Aug 2000 A
6112674 Stanford Sep 2000 A
D431869 Hampel Oct 2000 S
6129605 Cyrus et al. Oct 2000 A
6148583 Hardy Nov 2000 A
D436830 Nesseth Jan 2001 S
D437421 Hampel Feb 2001 S
D437942 Hampel Feb 2001 S
6185878 Bullard, III et al. Feb 2001 B1
6189270 Jeffers et al. Feb 2001 B1
6193083 Wood Feb 2001 B1
6200664 Figge et al. Mar 2001 B1
6250022 Paz et al. Jun 2001 B1
6250234 Apps Jun 2001 B1
6257559 Mouri Jul 2001 B1
6298619 Davie Oct 2001 B1
6311956 Erwin Nov 2001 B1
6318770 Molzer Nov 2001 B1
6325962 Kmiecik et al. Dec 2001 B1
6332554 McCarthy Dec 2001 B1
D452913 Ohanesian Jan 2002 S
6349907 Hollington et al. Feb 2002 B1
D455501 Greene Apr 2002 S
6363680 Erwin Apr 2002 B1
6374756 Fieldwick et al. Apr 2002 B1
6385942 Grossman et al. May 2002 B1
6389769 McKinney et al. May 2002 B1
6397537 Auer et al. Jun 2002 B2
6413348 Stancu et al. Jul 2002 B2
6418672 Hampel Jul 2002 B1
6443521 Nye et al. Sep 2002 B1
6446414 Bullard et al. Sep 2002 B1
6482500 Diginosa Nov 2002 B1
D468026 Tisbo et al. Dec 2002 S
D468442 Tisbo et al. Jan 2003 S
D468833 Tisbo et al. Jan 2003 S
D468834 Tisbo et al. Jan 2003 S
D469188 Tisbo et al. Jan 2003 S
6524518 Pelfrey Feb 2003 B1
6524690 Dyksterhouse Feb 2003 B1
6539680 Kunz et al. Apr 2003 B2
6562414 Carling May 2003 B2
D476424 Shanahan Jun 2003 S
6571529 Knudson et al. Jun 2003 B2
6581337 Skov et al. Jun 2003 B1
6589891 Rast Jul 2003 B1
6591558 De Zen Jul 2003 B1
6604328 Paddock Aug 2003 B1
D479882 Tisbo et al. Sep 2003 S
6622642 Ohanesian Sep 2003 B2
D481138 Forster et al. Oct 2003 S
6631594 Whiting Oct 2003 B2
6631821 Vourganas Oct 2003 B2
6637728 Pettit et al. Oct 2003 B2
6646022 Okazaki et al. Nov 2003 B2
D484339 Greene Dec 2003 S
D484612 Greene Dec 2003 S
6656316 Dyksterhouse Dec 2003 B1
6666152 Tsai Dec 2003 B2
6668514 Skov et al. Dec 2003 B2
6670419 Lau et al. Dec 2003 B2
6672970 Barlow Jan 2004 B2
6675545 Chen et al. Jan 2004 B2
6676113 Christensen et al. Jan 2004 B2
6681447 Houk, Jr. et al. Jan 2004 B2
6694897 Lou-Hao Feb 2004 B2
6695544 Knudson et al. Feb 2004 B2
6701678 Skov et al. Mar 2004 B1
6702128 Winig et al. Mar 2004 B2
6705796 Lund Mar 2004 B2
6709034 Michael Mar 2004 B2
6709995 Dyksterhouse Mar 2004 B1
6718888 Muirhead Apr 2004 B2
6719360 Backs Apr 2004 B1
6726864 Nasr et al. Apr 2004 B2
6736569 Lee May 2004 B2
6748876 Preisler et al. Jun 2004 B2
6752278 Craft et al. Jun 2004 B2
D492793 Moon et al. Jul 2004 S
D494281 Greene Aug 2004 S
D494834 Etlicher Aug 2004 S
6776300 Walsh et al. Aug 2004 B2
6782624 Marsh et al. Aug 2004 B2
6782672 Staats Aug 2004 B2
D496737 Moon et al. Sep 2004 S
6796087 Greene Sep 2004 B1
6802158 Greene Oct 2004 B1
6802159 Kotler Oct 2004 B1
6802327 Koss Oct 2004 B2
6808674 Skov et al. Oct 2004 B1
6821049 Greene Nov 2004 B1
6823639 Hampel Nov 2004 B2
D500604 Ashby Jan 2005 S
6868081 Akram et al. Mar 2005 B1
6868703 Molzer Mar 2005 B2
D505497 Astle et al. May 2005 S
6892497 Moon et al. May 2005 B2
D506011 Astle et al. Jun 2005 S
D506266 Astle et al. Jun 2005 S
D506267 Astle et al. Jun 2005 S
D506268 Astle et al. Jun 2005 S
6939599 Clark Sep 2005 B2
6942421 Jansson Sep 2005 B2
6948280 Marcinkowski et al. Sep 2005 B2
6954975 Dolinski Oct 2005 B2
D511258 Sandy Nov 2005 S
6971321 Strong et al. Dec 2005 B1
6976437 Fisch et al. Dec 2005 B2
D525715 Richardson et al. Jul 2006 S
7069865 Strong et al. Jul 2006 B2
D529623 Richardson et al. Oct 2006 S
7114298 Kotler Oct 2006 B2
7114453 Stanford Oct 2006 B2
7165499 Apps et al. Jan 2007 B2
7171910 Neunzert et al. Feb 2007 B2
7210277 Steed et al. May 2007 B2
D547880 Ashby et al. Jul 2007 S
D548362 Ashby et al. Aug 2007 S
7275489 Shuert Oct 2007 B1
7308857 Moore et al. Dec 2007 B2
7399517 Wang Jul 2008 B2
7654060 Steed et al. Feb 2010 B2
7658038 Mower et al. Feb 2010 B2
7770334 Mower et al. Aug 2010 B2
7770337 Mower et al. Aug 2010 B2
7770339 Mower et al. Aug 2010 B2
7779579 Mower et al. Aug 2010 B2
7797885 Mower et al. Sep 2010 B2
20010009703 Toshikawa Jul 2001 A1
20010012812 Spengler Aug 2001 A1
20020000545 Pettit et al. Jan 2002 A1
20020043035 Patel et al. Apr 2002 A1
20020088560 Amin-Javaheri Jul 2002 A1
20020092128 Houk, Jr. et al. Jul 2002 A1
20020092245 Floyd et al. Jul 2002 A1
20020092818 Craft et al. Jul 2002 A1
20020122912 Brock et al. Sep 2002 A1
20020170259 Ferris Nov 2002 A1
20020174532 Skov et al. Nov 2002 A1
20030024191 Hampel Feb 2003 A1
20030029113 Wetzel, III et al. Feb 2003 A1
20030033770 Harel Feb 2003 A1
20030106472 Lonneman et al. Jun 2003 A1
20030114101 Paz Jun 2003 A1
20030118404 Lee Jun 2003 A1
20030125399 Zhang et al. Jul 2003 A1
20030126814 Cook et al. Jul 2003 A1
20030146426 Ray et al. Aug 2003 A1
20030154675 LaBruzza Aug 2003 A1
20030178383 Craft et al. Sep 2003 A1
20030197165 Perelli Oct 2003 A1
20030201272 Carter Oct 2003 A1
20030203150 Moran et al. Oct 2003 A1
20030217676 Strong et al. Nov 2003 A1
20030226815 Gaunt et al. Dec 2003 A1
20040049992 Seavy Mar 2004 A1
20040074158 De Zen Apr 2004 A1
20040163340 Harel Aug 2004 A1
20040187400 Anderson Sep 2004 A1
20050166476 Feng Aug 2005 A1
20050223655 Mower et al. Oct 2005 A1
20050252109 Fuccella et al. Nov 2005 A1
20050279034 Tsang Dec 2005 A1
20060048459 Moore Mar 2006 A1
20060059792 Tiramani Mar 2006 A1
20060080941 Ishii et al. Apr 2006 A1
20060108899 Jin May 2006 A1
20060191209 Reisman Aug 2006 A1
20070044391 Richardson Mar 2007 A1
20070209295 Mower et al. Sep 2007 A1
20070251166 Thiagarajan et al. Nov 2007 A1
Foreign Referenced Citations (21)
Number Date Country
884059 Jul 1974 CA
2245624 Feb 2000 CA
2365055 Aug 2000 CA
2446581 Nov 2002 CA
2394715 Nov 2003 CA
2532106 Mar 2006 CA
1004937 Apr 1986 CN
2083602 Aug 1991 CN
ZL 200480020194.6 Oct 2009 CN
0339216 Nov 1989 EP
1166995 Jan 2002 EP
2552467 Mar 1985 FR
936088 Sep 1963 GB
2037838 Jul 1980 GB
2346392 Aug 2000 GB
05230935 Jul 1993 JP
06226820 Aug 1994 JP
07-012123 Feb 1995 JP
08108464 Apr 1996 JP
273238 Jan 2010 MX
WO 2005010288 Feb 2005 WO
Related Publications (1)
Number Date Country
20100132297 A1 Jun 2010 US
Provisional Applications (1)
Number Date Country
60487748 Jul 2003 US
Continuations (3)
Number Date Country
Parent 11742469 Apr 2007 US
Child 12698052 US
Parent 10890601 Jul 2004 US
Child 11742469 US
Parent 12698052 US
Child 11742469 US
Continuation in Parts (3)
Number Date Country
Parent 29180861 Apr 2003 US
Child 12698052 US
Parent 29180870 Apr 2003 US
Child 29180861 US
Parent 29186355 Jul 2003 US
Child 29180870 US