X-ray windows are used for enclosing an x-ray source or detection device. The window can be used to separate air from a vacuum within the enclosure while allowing passage of x-rays through the window.
X-ray windows can be made of a thin film. It can be desirable to minimize attenuation of the x-rays, especially with low energy x-rays, thus it is desirable that the film is made of a material and thickness that will result in minimal attenuation of the x-rays. Thinner films attenuate x-rays less than thick films, but the film must not be too thin or the film may sag or break. A sagging film can result in cracking of corrosion resistant coatings and a broken film will allow air to enter the enclosure, often destroying the functionality of the device. Thus it is desirable to have a film that is made of a material that will have sufficient strength to avoid breaking or sagging but also as thin as possible for minimizing attenuation of x-rays.
A support structure can be used to support the thin film. Use of a support structure can allow use of a thinner film than could be used without the support structure. For example, a support structure can be made of a plurality of ribs with openings therein. The thin film can be attached to and span the ribs and openings. In order to minimize attenuation of x-rays, it is desirable that the ribs of the structure have a smaller width and height. Wider and higher ribs are typically stronger. Stronger rib materials can provide sufficient strength at a smaller size.
X-ray windows are often used with x-ray detectors. In order to avoid contamination of an x-ray spectra from a sample being measured, it is desirable that x-rays impinging on the x-ray detector are only emitted from the source to be measured. Unfortunately, x-ray windows, including the window support structure and thin film, can also fluoresce and thus emit x-rays that can cause contamination lines in the x-ray spectra. Contamination of the x-ray spectra caused by low atomic number elements is less problematic than contamination caused by higher atomic number elements. It is desirable therefore that the window and support structure be made of a material with as low of an atomic number as possible in order to minimize this noise.
It has been recognized that it would be advantageous to have an x-ray window that is strong, minimizes attenuation of x-rays, and minimizes x-ray spectra contamination. The present invention is directed to an x-ray window that satisfies the need for an x-ray window that is strong, minimizes attenuation of x-rays, and minimizes x-ray spectra contamination.
In one embodiment, the x-ray window includes a film comprised of a polymer and a high strength material. The high strength material comprises carbon nanotubes and/or graphene. The high strength material reinforces the polymer, thus making a stronger polymer layer. Carbon has a low atomic number (6) and thus is less likely to contaminate an x-ray spectra than an element with a higher atomic number.
In another embodiment, the x-ray window includes a plurality of ribs having openings and a support frame disposed around and connected to a perimeter of the ribs. The ribs and the support frame comprise a high strength material and a polymer. The high strength material comprises carbon nanotubes and/or graphene. The high strength material reinforces the polymer. A thin film is disposed over and spans the plurality of ribs and openings.
As used herein, the term “about” is used to provide flexibility to a numerical range endpoint by providing that a given value may be “a little above” or “a little below” the endpoint.
As used herein, the term “CNT” means carbon nanotubes or carbon nanotube.
As used herein, the term “sccm” means standard cubic centimeters per minute.
As used herein, the term “substantially” refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result. For example, an object that is “substantially” enclosed would mean that the object is either completely enclosed or nearly completely enclosed. The exact allowable degree of deviation from absolute completeness may in some cases depend on the specific context. However, generally speaking the nearness of completion will be so as to have the same overall result as if absolute and total completion were obtained. The use of “substantially” is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result.
As used herein, the term “VACNT” means vertically aligned carbon nanotubes.
Reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Alterations and further modifications of the inventive features illustrated herein, and additional applications of the principles of the inventions as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.
As illustrated in
A high strength material 11 can be an individual layer or may be embedded in the polymer 12 as shown in the x-ray window film 20 of
The high strength material 11, in the various embodiments described herein, can include carbon nanotubes. As illustrated in
As illustrated in
As illustrated in
In the various embodiments described herein, the polymer can comprise a polyimide. In the various embodiments described herein, the x-ray window film, comprising polymer and high strength material, can be substantially transmissive to x-rays having an energy in the range of 100-20,000 electronvolts; can be capable of withstanding a differential pressure of at least 1 atmosphere; and/or can be capable of withstanding temperatures of greater than 225° C. Materials and thicknesses may be selected to allow the window to withstand a differential pressure of at least 1 atmosphere, thus allowing the window to be used in a device, such as an x-ray detector or x-ray tube, with vacuum on one side, and atmospheric pressure on the other side. Materials may be selected to allow the window to withstand temperatures of greater than 225° C. Sometimes there is a need to subject x-ray windows to higher temperatures, such as in manufacturing, thus it can be valuable to have an x-ray window that can withstand high temperatures.
As illustrated in
As illustrated in
As illustrated in
How to Make:
Carbon Nanotube Formation:
A carbon nanotube film may be formed by placing a substrate with a layer comprising alumina and a layer comprising iron in an oven at a temperature of greater than 600° C. then flowing ethylene across the substrate thus allowing carbon nanotubes to grow on the substrate. Growth rate can be controlled by the ethylene flow rate and by diluting the ethylene with argon gas. Thickness of the carbon nanotube forest can be controlled by the ethylene flow time. Use of sputtered iron catalyst instead of thermal deposited iron can result in slower carbon nanotube growth.
An Example of One Method of Forming the Carbon Nanotubes:
A silicon wafer was coated with a 30 nm alumina layer. A 6 nm iron layer was then deposited on the alumina layer by PVD sputtering. CNT forest samples were made having thicknesses of around 2 μm, 1 μm, and 500 nm with 1 second ethylene flow with different ethylene flow rates.
Samples were put onto a quartz boat and loaded into a quartz tube of a tube furnace (CNT growth furnace). Argon was switched on to flow into the tube furnace at 50% flow rate (355 sccm) and kept on during the whole growth cycle. After Argon purged the air out of the tube, hydrogen flow was turned on at a 20% flow rate (429 sccm) and the tube furnace was heated up to 750° C.
Ethylene flow was turned on for 1 second for short CNT forest growth at 50% flow rate (604 sccm). Shorter forests were produced with lower ethylene flow rate. Ethylene and hydrogen flow were turned off immediately after the one second growth.
The cover of the tube furnace was opened to accelerate the cooling process. When the temperature was down to 200° C., the samples were taken out from the tube furnace. Argon flow was turned off. This CNT growth cycle was finished.
Combining Carbon Nanotubes with Polymer—Method 1:
The carbon nanotubes can be aligned horizontally, or aligned randomly, by placing a film on top of the carbon nanotubes, rolling the carbon nanotubes flat with a cylindrical roller, then removing the film. For alignment of the carbon nanotubes in substantially a single direction, or in a direction substantially parallel with a surface of the film, the roller should not be very much larger in diameter than a height of the carbon nanotubes. Rollers that are much larger than the diameter of the roller can result in more random alignment of the carbon nanotubes.
For Example of One Method of Rolling the Carbon Nanotubes:
A VACNT forest sample with a size of around 18 mm×18 mm was directly placed on a flat, hard desk surface to avoid substrate cracking. An aluminum foil of about 30 mm×30 mm was placed over and covered the whole nanotube sample surface. Tape was used to cover the edges of the substrate and aluminum foil to avoid substrate shift. A 50 mm×80 mm nitrile sheet of about 0.4 mm in thickness was placed over the aluminum foil and also taped to the desk. A smooth glass tube with 1.57 cm outer diameter was rolled and pressed over the nitrile rubber sheet, aluminum foil, and the CNT sample from different directions for 100 times. The nitrile rubber sheet and the aluminum foil were removed. A thinner and denser CNT film was obtained.
A polymer film can then be applied, such as by placing a polymer film on the carbon nanotubes. The polymer film may be pressed onto the carbon nanotubes in order to embed the carbon nanotubes in the film. Alternatively, a liquid polymer may be poured onto the carbon nanotubes or spun onto the carbon nanotubes, then the polymer can harden by suitable method. The carbon nanotubes can then be released from the substrate, such as by use of hydrofluoric acid.
Combining Carbon Nanotubes with Polymer—Method 2:
Carbon nanotubes may be sprayed onto a polymer film. Alternatively, carbon nanotubes may be sprayed onto a liquid polymer, then the polymer may be cured. A method for spraying carbon nanotubes is described in Chemical Engineering Science, “Insights into the physics of spray coating of SWNT films”, available online 5 Dec. 2009, which is incorporated herein by reference.
In summary of the above method, a suspension of carbon nanotubes may be prepared by an appropriate solvent, such as water with a surfactant, and sonication. The carbon nanotube suspension may then be sprayed onto the appropriate surface. In the present invention, the carbon nanotube suspension can be sprayed onto a polymer. Another polymer layer can be deposited onto the carbon nanotubes, such as by spin coating.
Layer Including Graphene:
A graphene film may be made by flowing methane across a copper surface in an oven at a temperature of greater than 1000° C., thus allowing formation of a graphene layer. The copper may be removed from the graphene layer such as by dissolving the copper in an acid. Liquid polymer may be sprayed on or poured on then cured, such as in an oven, thus forming a composite layer with graphene and polymer.
Other Manufacturing Issues:
The above methods may be combined for making a film with graphene, carbon nanotubes, and polymer. Multiple layers of carbon nanotube and polymer may be stacked together. Multiple layers of graphene and polymer may be stacked together. A layer, or layers, carbon nanotube and polymer may be stacked with a layer, or layers, of graphene and polymer.
A support structure can be made by patterning and etching. The support structure can be made of polymer and a high strength material, or may be made of other material. A film, or layers of films may be placed onto the support structure. The film can comprise diamond, graphene, diamond-like carbon, carbon nanotubes, polymer, beryllium, or combinations thereof. An adhesive may be used to adhere the film to the support structure.
It is to be understood that the above-referenced arrangements are only illustrative of the application for the principles of the present invention. Numerous modifications and alternative arrangements can be devised without departing from the spirit and scope of the present invention. While the present invention has been shown in the drawings and fully described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiment(s) of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications can be made without departing from the principles and concepts of the invention as set forth herein.
This is a continuation-in-part of U.S. patent application Ser. No. 12/239,281, filed on Sep. 26, 2008; which claims priority of U.S. Patent Application Ser. No. 60/995,881, filed Sep. 28, 2007; and is also a continuation-in-part of U.S. patent application Ser. No. 12/899,750, filed Oct. 7, 2010; which are hereby incorporated by reference. This also claims priority to U.S. Provisional Patent Application Ser. No. 61/437,792, filed on Jan. 31, 2011; which is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1276706 | Snook et al. | May 1918 | A |
1881448 | Forde et al. | Oct 1932 | A |
1946288 | Kearsley | Feb 1934 | A |
2291948 | Cassen | Aug 1942 | A |
2316214 | Atlee et al. | Apr 1943 | A |
2329318 | Atlee et al. | Sep 1943 | A |
2340363 | Atlee et al. | Feb 1944 | A |
2502070 | Atlee et al. | Mar 1950 | A |
2663812 | Jamison et al. | Mar 1950 | A |
2683223 | Hosemann | Jul 1954 | A |
2952790 | Steen | Sep 1960 | A |
3397337 | Denholm | Aug 1968 | A |
3358368 | Oess | Nov 1970 | A |
3665236 | Gaines et al. | May 1972 | A |
3679927 | Kirkendall | Jul 1972 | A |
3691417 | Gralenski | Sep 1972 | A |
3751701 | Gralenski et al. | Aug 1973 | A |
3801847 | Dietz | Apr 1974 | A |
3828190 | Dahlin et al. | Aug 1974 | A |
3873824 | Bean | Mar 1975 | A |
3882339 | Rate et al. | May 1975 | A |
3962583 | Holland et al. | Jun 1976 | A |
3970884 | Golden | Jul 1976 | A |
4007375 | Albert | Feb 1977 | A |
4075526 | Grubis | Feb 1978 | A |
4126788 | Koontz et al. | Nov 1978 | A |
4160311 | Ronde et al. | Jul 1979 | A |
4163900 | Warren et al. | Aug 1979 | A |
4178509 | More et al. | Dec 1979 | A |
4184097 | Auge | Jan 1980 | A |
4250127 | Warren et al. | Feb 1981 | A |
4293373 | Greenwood | Oct 1981 | A |
4368538 | McCorkle | Jan 1983 | A |
4393127 | Greschner et al. | Jul 1983 | A |
4443293 | Mallon et al. | Apr 1984 | A |
4463338 | Utner et al. | Jul 1984 | A |
4521902 | Peugeot | Jun 1985 | A |
4532150 | Endo et al. | Jul 1985 | A |
4573186 | Reinhold | Feb 1986 | A |
4576679 | White | Mar 1986 | A |
4584056 | Perret et al. | Apr 1986 | A |
4591756 | Avnery | May 1986 | A |
4608326 | Neukermans et al. | Aug 1986 | A |
4645977 | Kurokawa et al. | Feb 1987 | A |
4675525 | Amingual et al. | Jun 1987 | A |
4679219 | Ozaki | Jul 1987 | A |
4688241 | Peugeot | Aug 1987 | A |
4696994 | Nakajima et al. | Sep 1987 | A |
4705540 | Hayes | Nov 1987 | A |
4777642 | Ono | Oct 1988 | A |
4797907 | Anderton | Jan 1989 | A |
4818806 | Kunimune et al. | Apr 1989 | A |
4819260 | Haberrecker | Apr 1989 | A |
4837068 | Martin et al. | Jun 1989 | A |
4862490 | Karnezos et al. | Aug 1989 | A |
4870671 | Hershyn | Sep 1989 | A |
4876330 | Higashi et al. | Oct 1989 | A |
4878866 | Mori et al. | Nov 1989 | A |
4885055 | Woodbury et al. | Dec 1989 | A |
4891831 | Tanaka et al. | Jan 1990 | A |
4933557 | Perkins | Jun 1990 | A |
4939763 | Pinneo et al. | Jul 1990 | A |
4957773 | Spencer et al. | Sep 1990 | A |
4960486 | Perkins et al. | Oct 1990 | A |
4969173 | Valkonet | Nov 1990 | A |
4979198 | Malcolm et al. | Dec 1990 | A |
4979199 | Cueman et al. | Dec 1990 | A |
5010562 | Hernandez et al. | Apr 1991 | A |
5055421 | Birkle et al. | Oct 1991 | A |
5063324 | Grunwald et al. | Nov 1991 | A |
5066300 | Isaacson et al. | Nov 1991 | A |
5077771 | Skillicorn et al. | Dec 1991 | A |
5077777 | Daly | Dec 1991 | A |
5090046 | Friel | Feb 1992 | A |
5105456 | Rand et al. | Apr 1992 | A |
5117829 | Miller et al. | Jun 1992 | A |
5153900 | Nomikos et al. | Oct 1992 | A |
5161179 | Suzuki et al. | Nov 1992 | A |
5173612 | Imai et al. | Dec 1992 | A |
5196283 | Ikeda et al. | Mar 1993 | A |
5206534 | Birkle et al. | Apr 1993 | A |
5217817 | Verspui et al. | Jun 1993 | A |
5226067 | Allred et al. | Jul 1993 | A |
RE34421 | Parker et al. | Oct 1993 | E |
5258091 | Imai et al. | Nov 1993 | A |
5267294 | Kuroda et al. | Nov 1993 | A |
5302523 | Coffee et al. | Apr 1994 | A |
5343112 | Wegmann | Aug 1994 | A |
5391958 | Kelly | Feb 1995 | A |
5392042 | Pellon | Feb 1995 | A |
5400385 | Blake et al. | Mar 1995 | A |
5422926 | Smith et al. | Jun 1995 | A |
5428658 | Oettinger et al. | Jun 1995 | A |
5432003 | Plano et al. | Jul 1995 | A |
5465023 | Garner | Nov 1995 | A |
5469429 | Yamazaki et al. | Nov 1995 | A |
5469490 | Golden et al. | Nov 1995 | A |
5478266 | Kelly | Dec 1995 | A |
5521851 | Wei et al. | May 1996 | A |
5524133 | Neale et al. | Jun 1996 | A |
5561342 | Roeder et al. | Oct 1996 | A |
RE35383 | Miller et al. | Nov 1996 | E |
5571616 | Phillips et al. | Nov 1996 | A |
5578360 | Viitanen | Nov 1996 | A |
5602507 | Suzuki | Feb 1997 | A |
5607723 | Plano et al. | Mar 1997 | A |
5616179 | Baldwin et al. | Apr 1997 | A |
5621780 | Smith et al. | Apr 1997 | A |
5627871 | Wang | May 1997 | A |
5631943 | Miles | May 1997 | A |
5673044 | Pellon | Sep 1997 | A |
5680433 | Jensen | Oct 1997 | A |
5682412 | Skillicorn et al. | Oct 1997 | A |
5696808 | Lenz | Dec 1997 | A |
5706354 | Stroehlein | Jan 1998 | A |
5729583 | Tang et al. | Mar 1998 | A |
5774522 | Warburton | Jun 1998 | A |
5812632 | Schardt et al. | Sep 1998 | A |
5835561 | Moorman et al. | Nov 1998 | A |
5870051 | Warburton | Feb 1999 | A |
5898754 | Gorzen | Apr 1999 | A |
5907595 | Sommerer | May 1999 | A |
6002202 | Meyer et al. | Dec 1999 | A |
6005918 | Harris et al. | Dec 1999 | A |
6044130 | Inazura et al. | Mar 2000 | A |
6062931 | Chuang et al. | May 2000 | A |
6063629 | Knoblauch | May 2000 | A |
6069278 | Chuang | May 2000 | A |
6073484 | Miller et al. | Jun 2000 | A |
6075839 | Treseder | Jun 2000 | A |
6097790 | Hasegawa et al. | Aug 2000 | A |
6129901 | Moskovits et al. | Oct 2000 | A |
6133401 | Jensen | Oct 2000 | A |
6134300 | Trebes et al. | Oct 2000 | A |
6184333 | Gray | Feb 2001 | B1 |
6205200 | Boyer et al. | Mar 2001 | B1 |
6277318 | Bower | Aug 2001 | B1 |
6282263 | Arndt et al. | Aug 2001 | B1 |
6288209 | Jensen | Sep 2001 | B1 |
6307008 | Lee et al. | Oct 2001 | B1 |
6320019 | Lee et al. | Nov 2001 | B1 |
6351520 | Inazaru | Feb 2002 | B1 |
6385294 | Suzuki et al. | May 2002 | B2 |
6388359 | Duelli et al. | May 2002 | B1 |
6438207 | Chidester et al. | Aug 2002 | B1 |
6447880 | Coppens | Sep 2002 | B1 |
6477235 | Chornenky et al. | Nov 2002 | B2 |
6487272 | Kutsuzawa | Nov 2002 | B1 |
6487273 | Takenaka et al. | Nov 2002 | B1 |
6494618 | Moulton | Dec 2002 | B1 |
6546077 | Chornenky et al. | Apr 2003 | B2 |
6567500 | Rother | May 2003 | B2 |
6644853 | Kantor et al. | Nov 2003 | B1 |
6645757 | Okandan et al. | Nov 2003 | B1 |
6646366 | Hell et al. | Nov 2003 | B2 |
6658085 | Sklebitz | Dec 2003 | B2 |
6661876 | Turner et al. | Dec 2003 | B2 |
6738484 | Nakabayashi | May 2004 | B2 |
6740874 | Doring | May 2004 | B2 |
6778633 | Loxley et al. | Aug 2004 | B1 |
6799075 | Chornenky et al. | Sep 2004 | B1 |
6803570 | Bryson, III et al. | Oct 2004 | B1 |
6803571 | Mankos et al. | Oct 2004 | B1 |
6816573 | Hirano et al. | Nov 2004 | B2 |
6819741 | Chidester | Nov 2004 | B2 |
6838297 | Iwasaki | Jan 2005 | B2 |
6852365 | Smart et al. | Feb 2005 | B2 |
6866801 | Mau et al. | Mar 2005 | B1 |
6876724 | Zhou | Apr 2005 | B2 |
6900580 | Dai et al. | May 2005 | B2 |
6944268 | Shimono | Sep 2005 | B2 |
6956706 | Brandon | Oct 2005 | B2 |
6962782 | Livache et al. | Nov 2005 | B1 |
6976953 | Pelc | Dec 2005 | B1 |
6987835 | Lovoi | Jan 2006 | B2 |
7035379 | Turner et al. | Apr 2006 | B2 |
7046767 | Okada et al. | May 2006 | B2 |
7049735 | Ohkubo et al. | May 2006 | B2 |
7072439 | Radley et al. | Jul 2006 | B2 |
7075699 | Oldham et al. | Jul 2006 | B2 |
7085354 | Kanagami | Aug 2006 | B2 |
7108841 | Smally | Sep 2006 | B2 |
7130380 | Lovoi et al. | Oct 2006 | B2 |
7130381 | Lovoi et al. | Oct 2006 | B2 |
7166910 | Minervini | Jan 2007 | B2 |
7189430 | Ajayan et al. | Mar 2007 | B2 |
7203283 | Puusaari | Apr 2007 | B1 |
7206381 | Shimono et al. | Apr 2007 | B2 |
7215741 | Ukita | May 2007 | B2 |
7224769 | Turner | May 2007 | B2 |
7233071 | Furukawa et al. | Jun 2007 | B2 |
7233647 | Turner et al. | Jun 2007 | B2 |
7236568 | Dinsmore et al. | Jun 2007 | B2 |
7286642 | Ishikawa et al. | Oct 2007 | B2 |
7305066 | Ukita | Dec 2007 | B2 |
7358593 | Smith et al. | Apr 2008 | B2 |
7364794 | Ohnishi et al. | Apr 2008 | B2 |
7378157 | Sakakura et al. | May 2008 | B2 |
7382862 | Bard et al. | Jun 2008 | B2 |
7399794 | Harmon et al. | Jul 2008 | B2 |
7410603 | Noguchi et al. | Aug 2008 | B2 |
7428054 | Yu et al. | Sep 2008 | B2 |
7428298 | Bard et al. | Sep 2008 | B2 |
7448801 | Oettinger et al. | Nov 2008 | B2 |
7448802 | Oettinger et al. | Nov 2008 | B2 |
7486774 | Cain | Feb 2009 | B2 |
7526068 | Dinsmore | Apr 2009 | B2 |
7529345 | Bard et al. | May 2009 | B2 |
7618906 | Meilahti | Nov 2009 | B2 |
7634052 | Grodzins | Dec 2009 | B2 |
7649980 | Aoki et al. | Jan 2010 | B2 |
7650050 | Haffner et al. | Jan 2010 | B2 |
7657002 | Burke et al. | Feb 2010 | B2 |
7680652 | Giesbrecht et al. | Mar 2010 | B2 |
7684545 | Damento et al. | Mar 2010 | B2 |
7693265 | Hauttmann et al. | Apr 2010 | B2 |
7709820 | Decker et al. | May 2010 | B2 |
3741797 | Chavasse, Jr. et al. | Jun 2010 | A1 |
7737424 | Xu et al. | Jun 2010 | B2 |
7756251 | Davis et al. | Jul 2010 | B2 |
8498381 | Liddiard et al. | Jul 2013 | B2 |
8761344 | Reynolds et al. | Jun 2014 | B2 |
8774365 | Wang | Jul 2014 | B2 |
8804910 | Wang et al. | Aug 2014 | B1 |
8929515 | Liddiard | Jan 2015 | B2 |
8989354 | Davis et al. | Mar 2015 | B2 |
20020075999 | Rother | Jun 2002 | A1 |
20020094064 | Zhou | Jul 2002 | A1 |
20030096104 | Tobita et al. | May 2003 | A1 |
20030117770 | Montgomery et al. | Jun 2003 | A1 |
20030122111 | Glatkowski | Jul 2003 | A1 |
20030152700 | Asmussen et al. | Aug 2003 | A1 |
20030165418 | Ajayan et al. | Sep 2003 | A1 |
20040076260 | Charles, Jr. et al. | Apr 2004 | A1 |
20050018817 | Oettinger et al. | Jan 2005 | A1 |
20050141669 | Shimono et al. | Jun 2005 | A1 |
20050157305 | Yu et al. | Jul 2005 | A1 |
20050207537 | Ukita | Sep 2005 | A1 |
20060073682 | Furukawa et al. | Apr 2006 | A1 |
20060098778 | Oettinger et al. | May 2006 | A1 |
20060233307 | Dinsmore | Oct 2006 | A1 |
20060269048 | Cain | Nov 2006 | A1 |
20070025516 | Bard et al. | Feb 2007 | A1 |
20070087436 | Miyawaki et al. | Apr 2007 | A1 |
20070111617 | Meilahti | May 2007 | A1 |
20070133921 | Haffner et al. | Jun 2007 | A1 |
20070142781 | Sayre | Jun 2007 | A1 |
20070165780 | Durst et al. | Jul 2007 | A1 |
20070176319 | Thostenson et al. | Aug 2007 | A1 |
20070183576 | Burke et al. | Aug 2007 | A1 |
20080181365 | Matoba | Jul 2008 | A1 |
20080199399 | Chen et al. | Aug 2008 | A1 |
20080296479 | Anderson et al. | Dec 2008 | A1 |
20080296518 | Xu et al. | Dec 2008 | A1 |
20080317982 | Hecht | Dec 2008 | A1 |
20090085426 | Davis et al. | Apr 2009 | A1 |
20090086923 | Davis et al. | Apr 2009 | A1 |
20100003186 | Yoshikawa et al. | Jan 2010 | A1 |
20100096595 | Prud'Homme et al. | Apr 2010 | A1 |
20100126660 | O'Hara | May 2010 | A1 |
20100140497 | Damiano, Jr. et al. | Jun 2010 | A1 |
20100239828 | Cornaby et al. | Sep 2010 | A1 |
20100243895 | Xu et al. | Sep 2010 | A1 |
20100248343 | Aten et al. | Sep 2010 | A1 |
20100285271 | Davis et al. | Nov 2010 | A1 |
20100323419 | Aten et al. | Dec 2010 | A1 |
20110017921 | Jiang et al. | Jan 2011 | A1 |
20110031566 | Kim et al. | Feb 2011 | A1 |
20110089330 | Thomas | Apr 2011 | A1 |
20110121179 | Liddiard et al. | May 2011 | A1 |
20120003448 | Weigel et al. | Jan 2012 | A1 |
20120025110 | Davis et al. | Feb 2012 | A1 |
20130077761 | Sipila | Mar 2013 | A1 |
20130089184 | Sipila | Apr 2013 | A1 |
20130315380 | Davis et al. | Nov 2013 | A1 |
20140127446 | Davis et al. | May 2014 | A1 |
20140140487 | Harker et al. | May 2014 | A1 |
20150016593 | Larson et al. | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
1030936 | May 1958 | DE |
4430623 | Mar 1996 | DE |
19818057 | Nov 1999 | DE |
0297808 | Jan 1989 | EP |
0330456 | Aug 1989 | EP |
0400655 | May 1990 | EP |
0676772 | Mar 1995 | EP |
1252290 | Nov 1971 | GB |
57082954 | Aug 1982 | JP |
S6074253 | Apr 1985 | JP |
S6089054 | May 1985 | JP |
3170673 | Jul 1991 | JP |
05066300 | Mar 1993 | JP |
5135722 | Jun 1993 | JP |
06119893 | Jul 1994 | JP |
6289145 | Oct 1994 | JP |
6343478 | Dec 1994 | JP |
8315783 | Nov 1996 | JP |
2001179844 | Jul 2001 | JP |
2003007237 | Jan 2003 | JP |
2003088383 | Mar 2003 | JP |
2003510236 | Mar 2003 | JP |
20033211396 | Jul 2003 | JP |
4171700 | Jun 2006 | JP |
2006297549 | Nov 2006 | JP |
10-2005-0107094 | Nov 2005 | KR |
WO9619738 | Jun 1996 | WO |
WO96-19738 | Jun 1996 | WO |
WO9965821 | Dec 1999 | WO |
WO0009443 | Feb 2000 | WO |
WO0017102 | Mar 2000 | WO |
WO03076951 | Sep 2003 | WO |
WO 2008052002 | May 2008 | WO |
WO 2009009610 | Jan 2009 | WO |
WO 2009045915 | Apr 2009 | WO |
WO 2009085351 | Jul 2009 | WO |
WO 2010107600 | Sep 2010 | WO |
Entry |
---|
U.S. Appl. No. 12/239,281, filed Sep. 26, 2008; Robert C. Davis; office action issued Dec. 13, 2011. |
U.S. Appl. No. 12/814,912, filed Jun. 14, 2010; Degao Xu; office action issued Dec. 5, 2011. |
Vajtai et al.; Building Carbon Nanotubes and Their Smart Architectures; Smart Mater. Struct. 2002; pp. 691-698; vol. 11. |
PCT Application PCT/US2011/046371; filed Aug. 3, 2011; Steven Liddiard; International Search Report mailed Feb. 29, 2012. |
Anderson et al., U.S. Appl. No. 11/756,962, filed Jun. 1, 2007. |
Barkan et al., “Improved window for low-energy x-ray transmission a Hybrid design for energy-dispersive microanalysis,” Sep. 1995, 2 pages, Ectroscopy 10(7). |
Blanquart et al.; “XPAD, a New Read-out Pixel Chip for X-ray Counting”; IEEE Xplore; Mar. 25, 2009. |
Chen, Xiaohua et al., “Carbon-nanotube metal-matrix composites prepared by electroless plating,” Composites Science and Technology, 2000, pp. 301-306, vol. 60. |
Comfort, J. H., “Plasma-enhanced chemical vapor deposition of in situ doped epitaxial silicon at low temperatures,” J. Appl. Phys. 65, 1067 (1989). |
Das, D. K., and K. Kumar, “Chemical vapor deposition of boron on a beryllium surface,” Thin Solid Films, 83(1), 53-60. |
Das, K., and Kumar, K., “Tribological behavior of improved chemically vapor-deposited boron on beryllium,” Thin Solid Films, 108(2), 181-188. |
Flahaut, E. et al., “Carbon Nanotube-metal-oxide nanocomposites; microstructure, electrical conductivity and mechanical properties,” Acta mater., 2000, pp. 3803-3812.Vo. 48. |
Gevin, et al. IDe-XV1.0: Performances of a New CMOS Multi channer Analogue Readout ASIC for Cd (Zn) Te Detectors; IEEE 2005. |
Grybos et al.; “DEDIX—Development of Fully Integrated Multichannel ASIC for High Count Rate Digital X-ray Imagining systems”; IEEE 2006; Nuclear Science Symposium Conference Record. |
Grybos, “Pole-Zero Cancellations Circuit With Pulse Pile-Up Tracking System for Low Noise Charge-Sensitive Amplifiers”; Mar. 25, 2009; from IEEE Xplore. |
Grybos, et al. “Measurements of Matching and High Count Rate Performance of Multichannel ASIC for Digital X-Ray Imaging Systems”; IEEE Transactions on Nuclear Science, vol. 54, No. 4, 2007. |
Hanigofsky, J. A., K. L. More, and W. J. Lackey, “Composition and microstructure of chemically vapor-deposited boron nitride, aluminum nitride and boron nitride + aluminum nitride composites,” J. Amer. Ceramic Soc. 74, 301 (1991). |
http://www.orau.org/ptp/collection/xraytubescollidge/MachelettCW250.htm, 1999, 2 pgs. |
Hutchison, “Vertically aligned carbon nanotubes as a framework for microfabrication of high aspect ration mems,” 2008, pp. 1-50. |
Jiang, Linquin et al., “Carbon nanotubes-metal nitride composites; a new class of nanocomposites with enhanced electrical properties,” J. Mater. Chem., 2005, pp. 260-266, vol. 15. |
Komatsu, S., and Y. Moriyoshi, “Influence of atomic hydrogen on the growth reactions of amorphous boron films in a low-pressure B.sub.2 H.sub.6 +He+H.sub.2 plasma”, J. Appl. Phys. 64, 1878 (1988). |
Komatsu, S., and Y. Moriyoshi, “Transition from amorphous to crystal growth of boron films in plasma-enhanced chemical vapor deposition with B.sub.2 H.sub.6 +He,” J. Appl. Phys., 66, 466 (1989). |
Komatsu, S., and Y. Moriyoshi, “Transition from thermal-to electron-impact decomposition of diborane in plasma-enhanced chemical vapor deposition of boron films from B.sub.2 H.sub.6 +He,” J. Appl. Phys. 66, 1180 (1989). |
Lee, W., W. J. Lackey, and P. K. Agrawal, “Kinetic analysis of chemical vapor deposition of boron nitride,” J. Amer. Ceramic Soc. 74, 2642 (1991). |
Li, Jun et al., “Bottom-up approach for carbon nanotube interconnects,” Applied Physics Letters, Apr. 14, 2003, pp. 2491-2493, vol. 82 No. 15. |
Lines, U.S. Appl. No. 12/352,864, filed Jan. 13, 2009. |
Lines, U.S. Appl. No. 12/726,120, filed Mar. 17, 2010. |
MA. R.Z., et al., “Processing and properties of carbon nanotubes-nano-SIC ceramic”, Journal of Materials Science 1998, pp. 5243-5246, vol. 33. |
Maya, L., and L. A. Harris, “Pyrolytic deposition of carbon films containing nitrogen and/or boron,” J. Amer. Ceramic Soc. 73, 1912 (1990). |
Michaelidis, M., and R. Pollard, “Analysis of chemical vapor deposition of boron,” J. Electrochem. Soc. 132, 1757 (1985). |
Micro X-ray Tube Operation Manual, X-ray and Specialty Instruments Inc., 1996, 5 pages. |
Moore, A. W., S. L. Strong, and G. L. Doll, “Properties and characterization of codeposited boron nitride and carbon materials,” J. Appl. Phys. 65, 5109 (1989). |
Nakamura, K., “Preparation and properties of amorphous boron nitride films by molecular flow chemical vapor deposition,” J. Electrochem. Soc. 132, 1757 (1985). |
Panayiotatos, et al., “Mechanical performance and growth characteristics of boron nitride films with respect to their optical, compositional properties and density,” Surface and Coatings Technology, 151-152 (2002) 155-159. |
PCT Application PCT/US08/65346; filed May 30, 2008; Keith Decker. |
PCT Application PCT/US10/56011; filed Nov. 9, 2010; Krzysztof Kozaczek. |
Peigney, et al., “Carbon nanotubes in novel ceramic matrix nanocomposites,” Ceramics International, 2000, pp. 677-683, vol. 26. |
Perkins, F. K., R. A. Rosenberg, and L. Sunwoo, “Synchrotronradiation deposition of boron and boron carbide films from boranes and carboranes: decaborane,” J. Appl. Phys. 69,4103 (1991). |
Powell et al., “Metalized polyimide filters for x-ray astronomy and other applications,” SPIE, pp. 432-440, vol. 3113. |
Rankov. A. “A Novel Correlated Double Sampling Poly-Si Circuit for Readout System in Large Area X-Ray Sensors”, 2005. |
Roca i Cabarrocas, P., S. Kumar, and B. Drevillon, “In situ study of the thermal decomposition of B.sub.2 H.sub.6 by combining spectroscopic ellipsometry and Kelvin probe measurements,” J. Appl. Phys. 66, 3286 (1989). |
Satishkumar B.C., et al. “Synthesis of metal oxide nanorods using carbon nanotubes as templates,” Journal of Materials Chemistry, 2000, pp. 2115-2119, vol. 10. |
Scholze et al., “Detection efficiency of energy-dispersive detectors with low-energy windows” X-Ray Spectrometry, X-Ray Spectrom, 2005: 34: 473-476. |
Sheather, “The support of thin windows for x-ray proportional counters,” Journal Phys,E., Apr. 1973, pp. 319-322, vol. 6, No. 4. |
Shirai, K., S.-I. Gonda, and S. Gonda, “Characterization of hydrogenated amorphous boron films prepared by electron cyclotron resonance plasma chemical vapor deposition method,” J. Appl. Phys. 67, 6286 (1990). |
Tamura, et al. “Developmenmt of ASICs for CdTe Pixel and Line Sensors”, IEEE Transactions on Nuclear Science, vol. 52, No. 5, Oct. 2005. |
Tien-Hui Lin et al., “An investigation on the films used as teh windows of ultra-soft X-ray counters.” Acta Physica Sinica, vol. 27, No. 3, pp. 276-283, May 1978, abstract only. |
U.S. Appl. No. 12/640,154, filed Dec. 17, 2009; Krzysztof Kozaczek. |
U.S. Appl. No. 12/726,120, filed Mar. 17, 2010; Michael Lines. |
U.S. Appl. No. 12/783,707, filed May 20, 2010; Steven D. Liddiard. |
U.S. Appl. No. 12/899,750, filed Oct. 7, 2010; Steven Liddiard. |
U.S. Appl. No. 13/018,667, filed Feb. 1, 2011; Lei Pei. |
Vandenbulcke, L. G., “Theoretical and experimental studies on the chemical vapor deposition of boron carbide,” Indust. Eng. Chem. Prod. Res. Dev. 24, 568 (1985). |
Viitanen Veli-Pekka et al., Comparison of Ultrathin X-Ray Window Designs, presented at the Soft X-rays in the 21st Century Conference held in Provo, utah Feb. 10-13, 1993, pp. 182-190. |
Wagner et al., “Effects of Scatter in Dual-Energy Imaging: An Alternative Analysis”; IEEE; Sep. 1989, vol. 8. No. 3. |
Winter, J., H. G. Esser, and H. Reimer, “Diborane-free boronization,” Fusion Technol. 20, 225 (1991). |
www.moxtek.com, Moxtek, Sealed Proportional Counter X-Ray Windows, Oct. 2007, 3 pages. |
www.moxtek.com, Moxtek, AP3 Windows, Ultra-thin Polymer X-Ray Windows, Sep. 2006, 2 pages. |
www.moxtek.com, Moxtek, DuraBeryllium X-Ray Windows, May 2007, 2 pages. |
www.moxtek.com, Moxtek, ProLine Series 10 Windows, Ultra-thin Polymer X-Ray Windows, Sep. 2006, 2 pages. |
www.moxtek.com, X-Ray Windows, ProLINE Series 20 Windows Ultra-thin Polymer X-ray Windows, 2 pages. Applicant believes that this product was offered for sale prior to the filing date of applicant's application. |
Yan, Xing-Bin, et al., Fabrications of Three-Dimensional ZnO-Carbon Nanotube (CNT) Hybrids Using Self-Assembled CNT Micropatterns as Framework, 2007. pp. 17254-17259, vol. III. |
U.S. Appl. No. 12/640,154, filed Dec. 17, 2009; Krzysztof Kozaczek; office action issued Apr. 26, 20111. |
U.S. Appl. No. 12/640,154, filed Dec. 17, 2009; Krzysztof Kozaczek; office action issued Jun. 9, 2011. |
U.S. Appl. No. 12/407,457, filed Mar. 19, 2009; Sterling W. Cornaby; office action issued Jun. 14, 2011. |
U.S. Appl. No. 12/640,154, filed Dec. 17, 2009; Krzysztof Kozaczek; notice of allowance issued May 23, 2011. |
U.S. Appl. No. 12/239,302, filed Sep. 26, 2008; Robert C. Davis; office action issued May 26, 2011. |
Nakajima et al.; Trial Use of Carbon-Fiber-Reinforced Plastic as a Non-Bragg Window Material of X-Ray Transmission; Rev. Sci. Instrum.; Jul. 1989; pp. 2432-2435 ; vol. 60; No. 7. |
Nakajima et al.; “Trial use of carbon-fiber-reinforced plastic as a non-Bragg window material of x-ray transmission”; Rev. Sci. Instrum 60 (7), Jul. 1989. |
Coleman, et al.; “Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites”; Carbon 44 (2006) 1624-1652. |
Najafi, et al.; “Radiation resistant polymer-carbon nanotube nanocomposite thin films”; Department of Materials Science and Engineering . . . Nov. 21, 2004. |
Wang, et al.; “Highly oriented carbon nanotube papers made of aligned carbon nanotubes”; Tsinghua-Foxconn Nanotechnology Research Center and Department of Physics; Published Jan. 31, 2008. |
Xie, et al.; “Dispersion and alignment of carbon nanotubes in polymer matrix: A review”; Center for Advanced Materials Technology; Apr. 20, 2005. |
Wu, et al.; “Mechanical properties and thermo-gravimetric analysis of PBO thin films”; Advanced Materials Laboratory, Institute of Electro-Optical Engineering; Apr. 30, 2006. |
Coleman, et al.; “Mechanical Reinforcement of Polymers Using Carbon Nanotubes”; Adv. Mater. 2006, 18, 689-706. |
Zhang, et al.; “Superaligned Carbon Nanotube Grid for High Resolution Transmission Electron Microscopy of Nanomaterials”; 2008 American Chemical Society. |
Hu, et al.; “Carbon Nanotube Thin Films: Fabrication, Properties, and Applications”; 2010 American Chemical Society Jul. 22, 2010. |
Neyco, France,“SEM & TEM: Grids”;catalog; http://www.neyco.fr/pdf/Grids.pdf#page=1. |
Hexcel Corporation; “Prepreg Technology” brochure; http://www.hexcel.com/Reso2882urces/DataSheets/Brochure-Data-Sheets/Prepreg—Technology.pdf. |
ML3 Scientific; SpectrumXTM Ultrathin X-Ray Windows; as accessed on May 26, 2011; 3 pages. |
Chakrapani et al.; Capillarity-Driven Assembly of Two-Dimensional Cellular Carbon Nanotube Foams; PNAS; Mar. 23, 2004; pp. 4009-4012; vol. 101; No. 12. |
PCT Application PCT/US2010/056011; filed Nov. 9, 2010; Krzysztof Kozaczek; International Search Report mailed Jul. 13, 2011. |
U.S. Appl. No. 12/783,707, filed May 20, 2010; Steven D. Liddiard; office action issued Jun. 22, 2012. |
U.S. Appl. No. 12/239,281, filed Sep. 26, 2008; Robert C. Davis; office action issued May 24, 2012. |
U.S. Appl. No. 13/209,862, filed Aug. 15, 2011; Sterling W. Cornaby; office action issued Oct. 9, 2012. |
U.S. Appl. No. 13/312,531, filed Dec. 6, 2011; Steve Liddiard; office action dated Dec. 20, 2013. |
U.S. Appl. No. 12/899,750, filed Oct. 7, 2010; Steven Liddiard; office action dated Oct. 15, 2012. |
PCT application EP12167551.6; filed May 10, 2012: Robert C. Davis; European search report mailed Nov. 21, 2013. |
Number | Date | Country | |
---|---|---|---|
20120025110 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
60995881 | Sep 2007 | US | |
61437792 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12239281 | Sep 2008 | US |
Child | 13018667 | US | |
Parent | 12899750 | Oct 2010 | US |
Child | 12239281 | US |