The present invention is directed to a position assurance device for use with an electrical connector. In particular, the invention is directed to a reinforced connector position assurance member which has a metal member or skeleton to provide increased structural integrity.
In certain applications, electronic components require an electrical connector assembly that joins first and second housings containing electrical contacts. One housing includes male electrical contacts, while the other housing includes female electrical contacts. The first housing is configured to be received inside the second housing such that the male and female electrical contacts are electrically connected. To be sure that the first and second housings are properly connected with the electrical contacts, the first and second housings are provided with a latch assembly more generally referred to as a position assurance feature. In known applications, the latch assembly includes a base plate, a suspended prong on the first housing and a ramp on the second housing. The base plate is slidably retained beside the prong. When the first housing is inserted about the second housing, the prong snaps over the ramp and the base plate is then slid over the ramp and the prong into an engagement position. In many applications, an audible click is typically used to detect if the connector is fully mated; however, noise at the assembly plant can make this ineffective.
Additionally, electrical connectors have been proposed that utilize a latch or retention assembly to maintain connector halves in a fully mated position, along with a connector position assurance (CPA) device or member. When the connector halves are mated and the latch or retention assembly is positioned to maintain contact between the connector halves, the connector position assurance member is moved to a position that indicates the connector halves are properly connected. Thus, the connector position assurance member provides a means to assure that the connector halves are fully mated.
While the foregoing latch and connector position assurance members function effectively for the intended applications, the components can be relatively bulky. The components are typically molded from plastic, and, thus, must be sufficiently thick to perform their intended function without cracking or breaking. Further, the latching mechanism is typically molded integrally with the connector housing, thereby complicating the molding process for the housing. Accordingly, it is desirable to provide a connector latching and connector position assurance member whose functional components are not molded integrally with the connector housing. It is further desirable to provide a connector position assurance member and latching mechanism whose functional components enable a lower profile and more compact construction than those of the prior art, without sacrificing strength and functionality. This is particularly important in small connectors, as the connector size limits the size of the connector position assurance member and how the connector position assurance member can interact with the housings.
It would be beneficial to have a position assurance member which is compact and which provides sufficient strength and stability characteristics to be effective for all connectors, including connectors which are to be used in small or confined spaces.
An embodiment is directed to a position assurance device. The position assurance device has a base portion with a top surface, a bottom surface, a base front end and a base back end. At least one resiliently deformable beam extends from the base portion in a direction away from the base back end. A metal member is provided in the at least one resiliently deformable beam. The metal member is configured to add strength and stability to the position assurance device.
The connector position assurance may have a plastic shell which is overmolded on the metal member to encase the metal member in the at least one resiliently deformable beam. In alternative embodiments, a cavity may be provided in the plastic shell which receives the metal member therein. In other alternative embodiments, the metal member forms the at least one resiliently deformable beam, with a portion of the metal member retained in the base portion.
An embodiment is directed to a connector position assurance device having a plastic shell and a metal member. The plastic shell includes a base portion having a top surface, a bottom surface, a base front end and a base back end. A transition portion extends from the base portion in a direction away from the back end. At least one resiliently deformable beam extends from the transition portion, the at least one resiliently deformable beam has a top side, a bottom side, a beam front end, a beam back end and a sidewall extending between the top side and the bottom side. The back end of the at least one resiliently deformable beam is spaced from the base front end. A connection portion extends between the sidewall of the at least one resiliently deformable beam and the transition portion. The metal member is provided in the at least one resiliently deformable beam, the connection portion and the transition portion of the plastic shell. The metal member has a base member and at least one resilient arm. The metal member is configured to provide strength and stability to the at least one resiliently deformable beam of the connector position assurance device.
An embodiment is directed to an electrical connector having a connector position assurance device. The connector includes a latch arm and a connector position assurance receiving opening position proximate the latch arm. The connector position assurance device is positioned in the connector position assurance receiving opening and is movable relative to the latch arm between a partially inserted position and a fully inserted position. The connector position assurance device has a base portion with a top surface, a bottom surface, a base front end and a base back end. At least one resiliently deformable beam extends from the base portion in a direction away from the base back end. A metal member is provided in the at least one resiliently deformable beam. The metal member is configured to add strength and stability to the connector position assurance device.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The description of illustrative embodiments according to principles of the present invention is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description of embodiments of the invention disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation unless explicitly indicated as such. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” and similar refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Moreover, the features and benefits of the invention are illustrated by reference to the preferred embodiments. Accordingly, the invention expressly should not be limited to such preferred embodiments illustrating some possible non-limiting combination of features that may exist alone or in other combinations of features, the scope of the invention being defined by the claims appended hereto.
The electrical connector 10 has a housing body 12 with a contact receiving passages 14 for receiving a contact (not shown). The electrical connector 10 has a forward mating end 16 and a rearward end 18. A first or top surface 19 and an oppositely facing second or bottom surface 20 extend between the mating end 16 and the rearward end 18.
A latch or latch arm 22 extends from the housing body 12 proximate the top surface 19. The latch 22 is used to latch and secure the mating connector (not shown) to the connector 10, as will be more fully described below.
As shown in
As shown in
The connector position assurance device 100 is positioned proximate to and is movable relative to the latch arm 22 of the connector 10. The connector position assurance device 100 is maintained in the connector position assurance receiving opening 30 and is movable between a first position or partially inserted position, as shown in
The connector position assurance device 100 has a base portion 102, a transition portion 117 which extends from the base portion 102, and two essentially parallel resiliently deformable beams 104, 105 which extend from the transition portion 117. The base portion 102 has a top surface 106, a bottom surface 108, a base front end 110 and a base back end 112. The back end 112 of the base portion 102 includes an engagement section to allow an operator to manually engage or activate the connector position assurance device 100. In the illustrative embodiment shown, operator engagement section extends across essentially the entire width of the back end 112. However, other configurations may be used without departing from the scope of the invention.
A latch engagement section 116 is provided between the front end 110 of the base portion 102 and the back end 112. The latch engagement section 116 extends from the top surface 106 of the base portion 102. As will be described further below, the latch engagement section 116 is configured to interact with the latch 22.
A transition portion 117 extends from the front end 110 of the base portion 102 in a direction away from the back end 112. The transition portion 117 has recesses or cavities 118 provided on either side thereof. The beams 104, 105 extend from a front end 119 of the transition portion 117.
Each resiliently deformable beam 104, 105 has a top side 120, a bottom side 122, a beam front end 124 and a beam back end 126. A sidewall 128 extends between the top side 120 and the bottom side 122. The back end 126 of each beam 104, 105 is positioned proximate to, but spaced from, the base front end 110. The back ends 126 of the beams 104, 105 are positioned in the cavities 118.
A connection portion 129 extends from the sidewall 128 of each beam 104, 105. The connection portion 129 is positioned between the beam front end 124 and the beam back end 126. The connection portion 129 extends from and is integral with the sidewall 128 of the respective beams 104, 105 and the front end 119 of the transition portion 117.
A lockout projection engagement member 130 extends from the sidewall 128 of the beam 104 a direction toward the beam 105. A lockout projection engagement member 130 also extends from the sidewall 128 of the beam 105 in a direction toward the beam 104. Each lockout projection engagement member 130 has a lockout projection engagement surface 132 and an angled surface 134 extending from the lockout projection engagement surface 132.
Latching projections 140 are provided proximate the beam back end 126 of each beam 104, 105. The latching projections 140 extend from the bottom sides 122 of the beams 104, 105 in a direction away from the top sides 120.
Referring to
As the connector 10 is mated with a mating connector, the latch 22 is resiliently activated or deflected away from the top surface 19 of the connector 10. If the connector 10 cannot properly mate with the mating connector, for example due to improper alignment of the contacts, the continued insertion of the connector 10 into the mating connector may be prevented. If this occurs, the latch 22 will remain in the deflected position. In this position, the connector position assurance device 100 cannot be moved to a second or inserted position, as the latch 22 will engage the front end 115 of the latch engagement section 116 of the connector position assurance device 100 to prevent the movement of the connector position assurance device 100 to the mated, second or inserted position.
As insertion continues, the latch 22 is returned to its original or unstressed position. As the insertion continues, a camming projection (not shown) of the mating connector engages the angled surfaces 134 of the lockout projection engagement members 130, causing the angled surfaces 134 and the lockout projection engagement members 130 to be moved apart. This causes the beams 104, 105 to resiliently deflect, as shown in
However, if the connector 10 and mating connector are not fully mated, the camming projection of the mating connector will not engage the angled surfaces 134 of the lockout projection engagement members 130, thereby preventing the movement of the lockout projection engagement members 130 and the resiliently deformable beams 104, 105. Consequently, continued insertion of the connector position assurance device 100 will be prevented by the cooperation of the lockout projection engagement surface 132 of the lockout projection engagement members 130 with the lockout projection 40.
With the resiliently deformable beams 104, 105 properly deflected, the insertion of the connector position assurance device 100 can continue. As insertion continues, as shown in
The connector position assurance device 100 is maintained in the final, closed or second position by the cooperation of the lockout projection engagement members 130 with the lockout projection 40 of the connector 10 and the cooperation of the latching projections 140 with the second latching recess 34, preventing the unwanted or inadvertent unmating of the connector 10 from the mating connector.
In the embodiment shown in
In the illustrative embodiment best shown in
The metal base member 176 cooperates with the plastic base portion 102 and the plastic transition portion 117 to provide increased stability and strength to the plastic base portion 102 and the plastic transition portion 117. The metal resilient arms 178 cooperate with the resiliently deformable plastic beams 104, 105 to provide increased strength and flexibility to the resiliently deformable plastic beams 104, 105.
The use of the metal member 170 adds strength, stability and flexibility to any connector position assurance device. This is particularly important as connectors and associated components, such as the connector position assurance devices, are miniaturized or become smaller due to space restrictions in the environments in which they are used.
The use of the metal member 170 allows the physical size of the connector position assurance device 100 to be reduced compared to a connector position assurance device which is made entirely from plastic. Compared to a connector position assurance device made entirely from plastic, the composite connector position assurance device can be smaller and thinner, while providing for increased structural rigidity and integrity.
The use of the metal member 170 also provides more consistency to the connector position assurance device 100. Many types of plastics are more inherently unstable than metal. As plastics are often glass filled, voids of different sizes may be present in the plastic shells, causing weak points in the shell, which are prone to failure. In contrast, the metal member can be more uniformly controlled during the manufacture and assembly, thereby providing a connector position assurance device which has more uniform properties and which is less prone to failure.
In addition, in the embodiment shown in
In the embodiment shown in
In the illustrative embodiment best shown in
The metal base member 276 cooperates with the plastic base portion 202 and the plastic transition portion 217 to provide increased stability and strength to the plastic base portion 202 and the plastic transition portion 217. The metal resilient arms 278 cooperate with the resiliently deformable plastic beams 204, 205 to provide increased strength and flexibility to the resiliently deformable plastic beams 204, 205.
The use of the metal member 270 adds strength, stability and flexibility to any connector position assurance device. This is particularly important as connectors and associated components, such as the connector position assurance devices, are miniaturized or become smaller due to space restrictions in the environments in which they are used.
The use of the metal member 270 allows the physical size of the connector position assurance device 200 to be reduced compared to a connector position assurance device which is made entirely from plastic. Compared to a connector position assurance device made entirely from plastic, the composite connector position assurance device can be smaller and thinner, while providing for increased structural rigidity and integrity.
The use of the metal member 270 also provides more consistency to the connector position assurance device 200. Many types of plastics are more inherently unstable than metal. As plastics are often glass filled, voids of different sizes may be present in the plastic shells, causing weak points in the shell, which are prone to failure. In contrast, the metal member can be more uniformly controlled during the manufacture and assembly, thereby providing a connector position assurance device which has more uniform properties and which is less prone to failure.
In the embodiment shown in
In the illustrative embodiment best shown in
The metal base member 376 cooperates with the plastic base portion 302 and the plastic transition portion 317 to provide increased stability and strength to the plastic base portion 302 and the plastic transition portion 317. The metal resilient arms 378, 379 provide increased strength and flexibility.
Each resilient arm 378, 379 has a top side 320, a bottom side 322, a beam front end 324 and a beam back end 326. A sidewall 328 extends between the top side 320 and the bottom side 322. The back end 326 of each resilient arm 378, 379 is positioned proximate to, but spaced from, the base front end 310. The back ends 326 of the resilient arms 378, 379 are positioned in the cavities 318.
A connection portion 329 extends from the sidewall 328 of each resilient arm 378, 379. The connection portion 329 is positioned between the beam front end 324 and the beam back end 326. The connection portion 329 extends from and is integral with the sidewall 328 of the respective resilient arms 378, 379.
A lockout projection engagement member 330 extends from the sidewall 328 of the arm 378 a direction toward the arm 379. A lockout projection engagement member 330 also extends from the sidewall 328 of the arm 379 in a direction toward the arm 378. Each lockout projection engagement member 330 has a lockout projection engagement surface 332 and an angled surface 334 extending from the lockout projection engagement surface 332.
Latching projections 340 are provide proximate the beam back end 326 of each resilient arm 378, 379. The latching projections 340 extend from the bottom sides 322 of the resilient arms 378, 379 in a direction away from the top sides 320.
The operation of the resilient arm 378, 379 is similar to that described for the beams 104, 105 previously described and will not be repeated.
The use of the metal member 370 adds strength, stability and flexibility to any connector position assurance device. This is particularly important as connectors and associated components, such as the connector position assurance devices, are miniaturized or become smaller due to space restrictions in the environments in which they are used.
The use of the metal member 370 allows the physical size of the connector position assurance device 300 to be reduced compared to a connector position assurance device which is made entirely from plastic. Compared to a connector position assurance device made entirely from plastic, the composite connector position assurance device can be smaller and thinner, while providing for increased structural rigidity and integrity.
The use of the metal member 370 also provides more consistency to the connector position assurance device 300. Many types of plastics are more inherently unstable than metal. As plastics are often glass filled, voids of different sizes may be present in the plastic shells, causing weak points in the shell, which are prone to failure. In contrast, the metal member can be more uniformly controlled during the manufacture and assembly, thereby providing a connector position assurance device which has more uniform properties and which is less prone to failure.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the spirit and scope of the invention as defined in the accompanying claims.
While the connector position assurance devices shown and described herein have two resiliently deformable beams and the metal member has two resilient arms, other configurations may be used. For example, the connector position assurance may have one or more resiliently deformable beams and the metal member may have one or more resilient arms.
In addition, the use of the metal member is not limited to use with a connector position assurance member. The metal member can also be used with other types of position assurance members, such as, but not limited to, terminal position assurance members. In all such position assurance members, the use of the metal member adds strength, stability and flexibility to any position assurance device, as discussed above.
One skilled in the art will appreciate that the invention may be used with many modifications of structure, arrangement, proportions, sizes, materials and components and otherwise used in the practice of the invention, which are particularly adapted to specific environments and operative requirements without departing from the principles of the present invention. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being defined by the appended claims, and not limited to the foregoing description or embodiments.
Number | Name | Date | Kind |
---|---|---|---|
6312277 | Holub | Nov 2001 | B1 |
7255593 | Tyler | Aug 2007 | B2 |
7473131 | Dunwoody | Jan 2009 | B2 |
9692168 | Schroll | Jun 2017 | B1 |
9899761 | Schroll | Feb 2018 | B2 |
20180090891 | Schroll | Mar 2018 | A1 |